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A B S T R A C T

The energy transition’s success in addressing climate change depends on several factors, including the afford
ability of new technologies and the influence of peers within communities. However, concerns about afford
ability raise questions about how economic inequalities shape peer effects and whether they create barriers to 
equitable adoption. To this end, we explore how inequalities influence peer effects in the uptake of renewable 
heating sources. We leverage over 260,000 observations from unique and unpublished microdata from the Polish 
Clean Air Priority Programme – one of the largest retrofit schemes in Europe. Our results show that peer effects 
accelerate technology uptake, with each additional installation increasing the likelihood of subsequent adoption 
by 0.014 pp. This amounts to a 7.7 % aggregate increase in the probability of installations in the average 1-km 
grid cell attributable to peer spillovers. Peer influence is affected by economic inequality. In more economically 
homogeneous areas, affluent individuals considerably impact their peers. In areas with higher economic dis
parities, this influence diminishes. Our findings highlight the role of heating technology type and adopter wealth 
in shaping peer effect magnitude. Less wealthy adopters of biomass stoves emerge as a significant driver of peer 
influence, especially in areas with lower income inequality. We advise direct transfers to address technology 
adoption inequalities, leveraging social capital in low-inequality areas and adopting individualised strategies in 
high-inequality areas.

1. Introduction

Differences in economic status can either facilitate or hinder the 
transmission of social influence. Individuals often seek to follow the 
behaviour of those perceived as aspirational figures, driving the spread 
of certain practices and ideas (Morgenroth et al., 2015). Economic status 
shapes the effectiveness of such influence. Practical and financial con
straints restrict the ability to adopt behaviours from other income 
groups. Consequently, peer effects and behaviour may vary in societies 
with different income inequalities. Understanding these dynamics is 
crucial in technology adoption, where economic constraints and the 
desire to follow peer behaviours often intersect (George et al., 2012; 
Gómez et al., 2024). Therefore, it is imperative to address the following 
question: how do economic inequalities influence the transmission and 
adoption of behaviours among different income groups?

We investigate the interplay between peer effects, economic 

inequality, and technological uptake to answer this question. We use the 
residential energy transition as an example to study their interdepen
dency, as this process explains how individuals and communities decide 
to adopt new technologies influenced by the behaviours of their peers 
(Bollinger and Gillingham, 2012). In our setting, peer exposure arises 
from observable changes in neighbouring dwellings within defined 
micro-areas. The decommissioning of coal stoves is marked by a visible 
reduction in stack emissions and the cessation of coal deliveries, often 
alongside on-site activity by installers. Cleaner heating technologies are 
also visible. Heat pumps typically feature externally mounted units 
visible from the street, whereas biomass systems commonly retain 
operational chimneys and, in many cases, visible fuel storage. The social 
visibility of these decisions creates a normative influence that either 
encourages or discourages change, reinforcing the role of peer effects in 
technology diffusion. However, the strength of this mechanism is 
contingent on economic disparities. Greater income inequality may 
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weaken the salience of peer influences if financial barriers prevent 
adoption despite strong social signals.

Our study uses a large sample of 260,000 observations of previously 
unpublished microdata from Poland’s Clean Air Priority Programme 
(CAPP). CAPP is a large-scale residential building retrofit initiative that 
offers technological subsidies for using cleaner energy sources. Our data 
contains information on contract assignment dates, household income, 
zip code-level addresses, and new heating sources. This rich dataset 
enables us to precisely assess the impact of economic inequality and 
financial incentives on households’ decisions to adopt new heating 
technologies. Polish institutional context offers a solid foundation for 
researching the relationship between income inequality and the adop
tion of energy-efficient technologies. Poland has a significant economic 
disparity across its regions (Bukowski and Novokmet, 2017), providing a 
diverse landscape for exploring the impact of income inequality on 
technology adoption. Additionally, Poland’s residential energy sector 
heavily relies on traditional energy sources like coal (Wierzbowski et al., 
2017), making the shift to renewable energy technologies, such as heat 
pumps, particularly impactful.

Against this background, we ask whether neighbourhood exposure 
actually speeds up the uptake of cleaner heating among programme 
participants, and whether this social pull is shaped by local inequality. 
Adding to this main research question, we also ask four sub-questions: 
(1) do more recent adoptions nearby make a household more likely to 
switch; (2) does that peer effect grow or fade as municipal income 
inequality rises; (3) does it look different for heat pumps than for 
biomass stoves, or (4) for wealthier versus less-wealthy adopters? 
Guided by diffusion theory and work on status signals within networks 
(Beaman et al., 2021), we expect three patterns. First, as the local 
installed base grows, subsequent adoption should rise in the next period. 
Second, because financial and informational distances widen with 
inequality, peer effects should be more substantial where inequality is 
lower. Third, technology and social position matter. We anticipate more 
pronounced peer influence for biomass among lower-wealth households 
in low-inequality areas, and steadier peer influence for heat pumps 
among higher-wealth households. We test these expectations using dy
namic panel estimators that relate quarter-to-quarter adoption changes 
to lagged local exposure, interacting peer exposure with continuous 
measures of municipal inequality and household-level wealth.

We position our study within prior work and extend it in three ways. 
First, we explore the relation between peer effects and economic in
equalities. To this end, we examine how economic disparities impact the 
effectiveness of peer influences in adopting various technologies. 
Existing research has indicated that social and economic factors, e.g. 
education and knowledge, income and wealth or peer effects and social 
networks, influence technology adoption (Foster and Rosenzweig, 2010; 
O’Shaughnessy et al., 2023). Due to peer effects, people are more likely 
to install new technologies if residents, neighbours, or other network 
members have done so previously (Curtius et al., 2018; Graziano and 
Gillingham, 2015; Scheller et al., 2022; Sokołowski, 2023; Stewart, 
2023). However, the role of economic inequality, particularly affecting 
the strength of peer effects in technology adoption, has received less 
attention (DiMaggio and Garip, 2012). Our analysis reveals significant 
and positive peer influences on technology uptake among the renewable 
heating adopters supported in the programme. Each additional instal
lation raises the likelihood of a subsequent installation by 0.014 pp. 
Aggregated over the programme period, this amounts to a 7.7 % increase 
in the probability of installations in the average 1-km grid cell attrib
utable to peer spillovers. Additionally, income inequality is paired with 
the decreased impact of peer influence on technology adoption. Spe
cifically, affluent individuals significantly impact their peers’ decisions 
to adopt new technologies in regions with lower income inequalities, 
with a 0.017 pp increase in adoption likelihood (corresponding to an 

overall 9.5 % increase in the installation probability attributable to peer 
effects in an average grid). Conversely, this peer effect diminishes sub
stantially in areas with higher economic disparities.

Second, we extend the just transition discourse by providing 
empirical evidence on the impacts of economic disparities on technology 
uptake and the effectiveness of subsidy programmes. Technological 
subsidies generally yield positive results regarding savings and subjec
tive quality of life, although varied spatial and distributional effects are 
observed (Lamb et al., 2020; Langer and Lemoine, 2022). Mainly, 
regressive effects raise controversies, as the preselection of wealthier 
households for subsidies under climate policy imperative can exacerbate 
new inequalities, contradicting the “leaving no one behind” principle 
during the shift towards cleaner energy sources (Heffron and Soko
łowski, 2024; Smith, 2017). According to the existing studies, income 
inequalities among those benefiting from technological subsidies mainly 
arise from low-income households’ financial constraints (Willand et al., 
2020; Stewart, 2021). Barriers like the inability to accumulate savings 
for a down payment or higher operational costs generate further in
equalities (Tozer et al., 2023), excluding less affluent households from 
benefiting from investments. Therefore, early adopters are often 
wealthier and possess knowledge of administrative procedures, tech
nical capabilities, and access to network resources (Hansen et al., 2022; 
Stewart, 2023). These disparities extend to the influence of peer effects 
on technology adoption. We find that the influence of peer effects on the 
adoption of heating technologies varies by the type of technology and 
the adopter’s wealth level. Less wealthy adopters with biomass stoves 
are the most influential in regions exhibiting low inequalities. For them, 
a biomass adopter in a region increases the likelihood of subsequent 
adoption by 0.016 in areas with lower income inequality and by 0.01 pp 
in more unequal regions.

Our third contribution is methodological, as we focus on wealth, 
rather than income, as the primary dimension of economic status in peer 
effect transmission. We make this distinction to address endogeneity 
concerns and provide a framework for analysing the heterogeneous ef
fects of peer influence and economic inequalities on technology adop
tion. While income is commonly used in studies of technology uptake 
and peer effects (O’Shaughnessy et al., 2023), it might be subject to 
endogeneity issues in the context of income disparities. In contrast, 
wealth, particularly fixed assets like real estate, is a more stable and 
exogenous measure of household economic status (Guren et al., 2021). 
To this end, we propose using the wealth score from observable, fixed 
characteristics of the building and its location as a proxy for wealth, 
which is less likely to be influenced by short-term shocks or endogenous 
factors associated with technology adoption decisions (Aladangady, 
2017). We validate our wealth score to confirm its robustness as a proxy 
for economic status. Our results demonstrate that households with 
higher wealth are more likely to reside in regions with greater income 
inequality, exhibit preferences for more advanced technologies like heat 
pumps, and face fewer financial constraints than low-wealth 
households.

From the point of view of energy policy, our research emphasises the 
crucial role of peer networks within socioeconomic groups in promoting 
sustainable practices and the impact of economic inequalities in 
dampening these networks’ effectiveness. Economic disparities tend to 
confine individuals within their socioeconomic groups, holding back the 
exchange of behaviours and limiting the broader adoption of sustainable 
technologies. Public policy should play a crucial role in mitigating these 
inequalities. Therefore, our findings highlight the need for policy in
terventions that reduce economic disparities, amplify the influence of 
peer effects, and promote a more equitable transition to sustainable 
technologies.
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2. Data and methodology

We use a rich and previously unused and unpulished household-level 
dataset that covers over 260,000 CAPP participants across nine out of 16 
Polish regions between 2018 and 2022.1 These Polish regions included 
in our sample represented diversity regarding geographic location, 
population density, age of housing stock, air quality level, forest cover, 
and particular environmental policy context, i.e., antismog resolutions.

The data are from the Regional Environmental Protection and Water 
Management Funds, directly responsible for CAPP implementation. The 
combined dataset contains information on the date of contract assign
ment, household income, zip code-level address, building surface, year 
of construction, new heating source, and amount of subsidy received. 
Based on the socioeconomic diversity of regions included in the study 
and the large sample of representatives, we claim that our results can be 
generalised for the whole programme.

We acknowledge that our data sources have limitations. Some ob
servations are incomplete; for example, they lack income or heating 
source information.2 This is because, at the beginning of the program, 
paper applications were also possible, which required manual entry into 
the database, and some data were not transferred to the digital system. 
Moreover, there were various reporting standards within each Regional 
Environmental Protection and Water Management Fund, so merging and 
cleaning the overall database into a robust form resulted in removing 
incomplete observations. We present the distributions of income, 
building construction year, and participants’ ages in the sample and the 
whole country at the county level in Appendix B (see Figures B1-B3).

2.1. The Clean Air Priority Programme

The Clean Air Priority Programme is Europe’s third-largest retrofit 
subsidy.3 The program is aimed at improving air quality and reducing 
greenhouse gas emissions by replacing heat sources and improving the 
energy efficiency of single-family residential buildings (National Fund 
for Environmental Protection and Water Management, 2024). It was 
established in 2018 as a part of the complex reaction to the air quality 
crisis in Poland (Frankowski, 2020). The announced long-term horizon 
and financial support (24 billion EUR until 2029) made it one of the 
most strategically oriented, publicly-led, multi-institutional retrofit ini
tiatives in Polish public policy (Matczak et al., 2023). Features dis
tinguishing CAPP from other nationwide European retrofit initiatives 
include focusing on single-family buildings, heating source replacement, 
and supporting fossil fuel technologies such as gas and, until 2022, even 
coal (Williams et al., 2023). During the implementation process, CAPP 
was strengthened by complementary financial schemes, such as loans, 
tax relief, and a dedicated program for energy-poor households in local 
authorities with the highest air pollution. Since its introduction in 2018 
and ongoing improvements, it has been relatively effective in meeting its 
primary objective and enhancing air quality in Poland (Sokołowski and 
Bouzarovski, 2022).

CAPP began as a technologically neutral program that supported all 
heating installations and improved energy efficiency. By the end of 
2021, about 2/3 of the applications were submitted for coal and gas 
installations (Fig. 1, panel a). In this way, the CAPP complemented the 
state’s gasification strategy, favoured by local governments and state- 
owned energy companies (Frankowski and Herrero, 2021). However, 

the situation changed in 2022, as the outbreak of war in Ukraine and 
concerns regarding fossil prices, combined with an emerging market 
penetration of this technology (Rosenow et al., 2022), boosted the 
popularity of heat pumps. CAPP amendments also supported this with 
favourable financing conditions for heat pump uptake. While in the first 
version, an average household could receive a subsidy of less than EUR 
2,000 for an air heat pump, at the end of 2023, it was more than EUR 4, 
000 for air heat pumps with an increased energy efficiency class, and 
almost two times more (EUR 7,700) in households with the lowest in
come. As a result, in 2023, heat pumps and biomass stoves accounted for 
over 70 % of the supported heating sources in the CAPP.

As the program developed, it became more income-progressive 
(Fig. 1, panel b). The amount of subsidies for individual technologies 
(conditional on the household income per person) determined the 
required level of investment and, consequently, the participation of 
different income groups in the programme. In the first three years of 
CAPP, funding intensity depended solely on income level.4 A significant 
change occurred in mid-2021 when subsidy levels were reduced to two 
categories (basic and upgraded) and when the maximum household 
income of the beneficiary decreased from 27,650 EUR to 22,026 EUR 
(Appendix 1, Figure A1). Five months later, at the beginning of 2022, the 
highest subsidy level was also introduced.5 Since 2023, due to inflation 
and rising prices, subsidies for individual technologies have been 
indexed (to increase progressivity, especially for heat pumps). A 
maximum funding threshold of about 30,000 EUR6 has been set for less 
affluent households, along with the provision of pre-financing options. 
However, there is no data on the programme’s adaptation pathways and 
knowledge transfer among different income groups.7

Importantly, we note that our estimates are identified within CAPP, a 
specific scheme with generous subsidies and pre-financing that lowers 
liquidity and credit constraints. This design likely amplifies the elasticity 
of adoption to neighbourhood signals so that absolute magnitudes may 
be larger than in low-subsidy settings. The context is policy-relevant 
rather than idiosyncratic. Many EU Member States are moving toward 
grant-based residential decarbonisation (e.g., Social Climate Fund- 
backed schemes), where the same constraints and visibility channels 
apply. By relaxing liquidity frictions, CAPP arguably offers a clearer read 
of the underlying behavioural mechanism, rather than suppressing it 
with binding budget constraints. In our data, the sign and structure of 
results (positive local peer effects, attenuation with higher inequality, 
and technology/wealth gradients) are stable across periods with 
different subsidy intensities and remain when we absorb local shocks 
with quarter fixed effects. We therefore view our magnitudes as policy- 
conditional, while the qualitative patterns are likely to generalise 
wherever (i) technologies are visibly observable at the neighbourhood 
scale and (ii) liquidity constraints are non-trivial.

2.2. Peer effects

We follow Bollinger and Gillingham’s (2012) standard approach to 

1 We thank Client Earth for sharing the data for this research. We note that 
Client Earth has applied for data from all the regions, but five regions refused to 
share the data, and two others provided data of a quality that was insufficient to 
include them in the analysis.

2 Approximately 215,000 have income information, and about 240,000 have 
heating source information.

3 After Federal support for energy-efficient buildings in Germany and the 
French energy retrofit programme MaPrimeRénov.

4 Specifically, there were seven income groups. The higher the income group, 
the lower the subsidy. Households were assigned to the first income group 
when the household monthly income per person was below 130 EUR (subsidy 
up to 90 % of eligible investment costs) and to the 7th income group, where the 
household monthly income per person was above 350 EUR (subsidy up to 30 % 
eligible investment costs).

5 These three groups vary not only in the percentage of subsidy regarding 
particular installations (higher in terms of upgraded and the highest group) but 
also in the total amount of the possible subsidy. At the end of 2023, households 
in the standard group can receive up to 14,500 EUR in the upgraded group, 
21,800 EUR, and 29,700 EUR in the highest group.

6 We assume a conversion rate between EUR and PLN of 4.54, an average for 
2023, published by the Polish Ministry of Finance.

7 Appendix B provides a detailed analysis of program participants’ incomes 
and timing of participation.
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measuring peer effects as lagged changes in the installed base of a 
particular technology.8 In our setting, the transmission of peer effects in 
adopting new heating technologies operates through observable 
behavioural patterns among neighbours within defined geographic 
areas. The mechanism of this influence is the visible action of their 
neighbours, as households observe whether their peers continue using 
traditional polluting coal stoves or opt for cleaner heating sources.

Our analysis focuses on two technologies: heat pumps and biomass 
stoves. We chose these technologies for four main reasons. First, we 
consider heat pumps and biomass to be more sustainable than tradi
tional fossil fuels like coal and natural gas, making these technologies 
relevant in the energy transition (Lindroos et al., 2021). Second, heat 
pumps and biomass stoves represent technologies adopted by more 
affluent and less affluent communities, making them appropriate for 
studying peer effects across different income brackets (Heiskanen and 
Matschoss, 2017). Third, the adoption patterns of these technologies 
make them better candidates for studying peer effects, unlike natural 
gas, where the decision to adopt may be less influenced by peer 
behaviour and more by infrastructure constraints (Nielsen et al., 2024). 
Finally, heat pumps and biomass boilers, differ in terms of visibility 
(heat pumps are more visible within the neighbourhood while biomass 
installation noticeable based on the changes of emitted smoke), 
complexity (the installation of a heat pump takes longer, requires spe
cialised expertise, and is more easily implemented in new buildings), as 
well as perceived benefits (heat pumps offer greater comfort, automa
tion, whereas biomass boilers generally do not; Fitó et al., 2021).

To investigate the relationships between income level and peer ef
fects, we first calculated deciles of income using the Household Budget 
Survey (Statistics Poland, 2019) for each year and assigned programme 
participants to the appropriate decile.9 Second, we used administrative 
data from the Polish Ministry of Finance (Chrostek et al., 2020) to assign 
the Gini coefficient and average income by municipality level. We 
differentiate between municipalities with “high inequality” (above the 
75th percentile of the Gini coefficient) and “low inequality” levels 
(below the 25th percentile of the Gini coefficient). The structure of 

municipalities in terms of inequality remains very similar in the nine 
regions included in the study and the seven regions excluded due to data 
unavailability.10 The structure of installed heating sources by region is 
comparable (see Figure B5 in Appendix B). Importantly, we study 
moderation (heterogeneous peer effects by inequality/wealth), not 
mediation (peer effects explaining inequality’s effect). We therefore 
avoid causal language on mediation and present moderated associations 
identified by dynamic panel estimators.

To measure peer effects, we calculated the share of households living 
in a given area who decided to install a new heating source. Therefore, 
we divided the area of Poland into 1-km squares using the Population 
and Housing Census 2021 layer, geolocated each program participant 
according to the precise location and matched them to the correspond
ing squares. Then, we assigned the number of buildings within each 
square using Census data. Finally, we calculated each square’s cumu
lative number of program participants by quarter of the year between 
2018 and 2022.11 The final dataset consists of 14,525 observation units 
(squares) with 20 observations of time in each square.

Next, we made two assumptions to calculate the share of households 
changing the heating source. First, we assumed each program partici
pant belongs to a separate household. Second, each building represented 
different households.12 Therefore, our baseline peer effect measure is 
the share of people living in buildings that changed the heating source 
(we will refer to them as adopters). Moreover, we keep the number of 
buildings within a square constant to ensure that variation in mea
surement comes only from the increased number of adopters: 

SHiq =
Adoptersiq

BUILDi
(1) 

where, i is square ID, and q is the quarter of the year.
Three main issues arise when identifying causal peer effects: 

endogenous group formation, correlated unobservable variables, and 
simultaneity (Manski, 1993). In our case, the following must happen to 
make the endogenous group formation an issue. First, after the 

Fig. 1. Distribution of technologies and subsidy groups in CAPP (number of applications).
Source: own elaboration based on CAPP data.

8 Following Bollinger and Gillingham (2012), we translate our results into a 
probability of a subsequent adoption. We use the average number of buildings 
in a given area as the denominator and add one additional adoption as the 
numerator. This creates a ratio representing the relative intensity of adoption in 
that area. We then multiply this ratio by the corresponding regression co
efficients. The result indicates how many percentage points the probability of 
subsequent installations increases due to this additional adoption.

9 We calculate equivalent income according to OECD methodology. Self- 
declared income of participants is presented in Figure B4 in Appendix B.

10 The structure in our sample contains 26 % low-inequality and 25 % high- 
inequality municipalities; the structure in the minority of regions not 
included in the sample is 24 % low-inequality and 25 % high-inequality 
municipalities.
11 Applications submitted to the programme must be processed within 30 

days, but this period may be extended by 30 more days in certain cases. 
Considering the additional time needed to prepare applications, the quarter of 
the year is a natural time span to observe the emergence of peer effects.
12 CAPP does not support multi-family buildings with three apartments or 

more.
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programme details announcement, individuals must have decided to 
build their houses next to each other. Second, they must have partici
pated in the program to receive a subsidy and switch heating source. 
However, considering the total costs of building (or buying) a house and 
other non-financial aspects (neighbourhood quality, proximity of 
schools and other public services, etc.), it is unlikely that program 
participation is biased by endogenous group formation. This is espe
cially unlikely since we excluded gas stoves from the support, where 
such practice (due to top-down, publicly-led infrastructural in
vestments) could occur more often. Instead, we focus on distributed 
generation heating technologies. Therefore, we claim that programme 
participation is exogenous to group formation. In our case, group for
mation is based on the geographical location of the buildings and is, 
therefore, exogenous.13

Next, we deal with correlated unobservable variables using a first- 
difference estimator (so unobserved square-related constant in time 
characteristics cancel out (Wooldridge, 2010). Finally, we address the 
issue of simultaneity by letting the agents’ decisions depend on past 
decisions made by their peers. Namely, we estimate the following 
model: 

SHi,q = βSHi,q− 1 + μq + ηi + υiq (2) 

where, μq is quarter fixed effects, ηi is constant for square i and υiq is the i. 
i.d. error term. Coefficient of interest β identifies the relationship be
tween past and current installations (peer effect). Consistent estimates 
with static panel data models require strict exogeneity assumption (no 
correlation between independent variable and past error terms 
E[SHi,q υit

]
= 0 ∀q ∕= t). This assumption cannot be met when lags are 

included as regressors. Therefore, we use a panel data GMM estimator 
approach with forward-orthogonal deviations transformation (Arellano 
and Bover, 1995). Consequently, we estimate the first differenced model 
of the form: 

Δ SHi,q = βΔSHi,q− 1 + μq + Δυiq (3) 

To meet the assumption of serially uncorrelated shocks 
(
E
[
υiqυit

]
= 0 ∀q∕= t

)
and error components 

(
E[ηi] = E

[
υiq

]
= E

[
ηiυiq

]

= 0
)

we utilise past realisations of Δ SHi,q as instruments to correct a bias 

arising from E
[
ΔSHi,q− 1Δυiq

]
∕= 0. In particular, we use second and higher- 

order lags as instruments, as they meet both relevance and orthogonality 
conditions. We follow the procedure provided by Kiviet (2020) to choose 
the appropriate specification of the model. We use Windmeijer’s (2005) 
correction following a two-step procedure to obtain robust standard 
errors.14

2.3. Wealth score

We focus on wealth rather than income as a primary dimension of 

analysis to address endogeneity concerns and provide a more robust 
basis for examining heterogeneous effects of peer influence and in
equalities. Income is more likely subject to endogeneity concerns in our 
context due to unobserved factors, such as individual characteristics, 
regional economic conditions, or policy interventions. In contrast, 
wealth should offer a more exogenous and stable proxy for household 
economic status. We use the value of a house as a proxy for wealth since 
fixed assets constitute about 95 % of households’ assets in Poland 
(National Bank of Poland, 2015). We derive the wealth score from 
observed, fixed characteristics such as the age of the building, the ty
pology of the municipality, and the building’s surface area (European 
Commission and Organisation for Economic Co-operation and Devel
opment, 2015).15 These variables are unlikely to be influenced by 
short-term shocks or endogenous factors related to the outcome vari
ables in our analysis, thus reducing concerns about reverse causality. 
Our methodological framework leverages the relative exogeneity of the 
wealth score to provide insights into the role of economic disparities in 
shaping outcomes.

We conducted regression analyses to validate our wealth score using 
a multinomial probit model, treating households with moderate wealth 
as the reference category.16 The results confirmed the robustness of our 
scoring method. First, we found that households classified as high 
wealth were more likely to be located in regions with high Gini co
efficients, reflecting inequality patterns in Poland (Tammaru et al., 
2020). Second, households with high wealth demonstrated a lower 
likelihood of installing biomass stoves than heat pumps, suggesting 
preferences aligned with higher financial flexibility and access to 
advanced technologies. Third, the wealth score corresponded closely 
with income distribution: low-wealth households were likelier to fall 
below the fifth income decile, whereas high-wealth households were 
likelier to exceed this threshold (Fig. 2). This correlation highlights a key 
characteristic of Polish households: wealth disparities strongly mirror 
income inequalities. Given Poland’s relatively recent transition to a 
free-market economy, much of the observed wealth inequality stems 
directly from income disparities (Bukowski and Novokmet, 2017).

3. Results

This section studies the causal relationships between inequalties and 
peer effects. To this end, we start by regressing peer effects on the total 
sample of participants (equation (3)). A few key findings emerge.

First, we find strong and positive peer effects on technology adoption 
among program participants. According to our estimates, adding one 
installation increases the probability of the subsequent installation by 
0.014 pp (Fig. 3 and Table B2 column 1). When broken down by regional 
inequality levels, the magnitude of peer effects is slightly higher in re
gions with lower inequalities, where one additional installation in
creases the probability of subsequent adoption by 0.016 percentage 
points, which translates to an aggregate 9.2 % additional probability of 
installation attributable to peer effects within the average 1-km grid 
during program duration. Similarly, one additional installation in re
gions with higher inequalities increases the probability of subsequent 
adoption by 0.013 pp (corresponding to an aggregated extra 6.3 % 
installation probability in an average grid).

Second, peer effects are most pronounced among affluent in
dividuals. Still, the differences in wealth groups are relatively small 
(Table B2 columns 2–4), suggesting that peer influence’s impact is 
consistent across different economic levels. Additionally, the strength of 
peer effects between individuals from the highest and lowest wealth 
strata decreases in regions with higher inequalities (Fig. 4 and Panels 
B–C of Table B2, columns 2 and 4). Namely, the probability that 

13 Our local exposure measure may bundle social contagion with supply-side 
dynamics (e.g. installer availability, contractor learning, targeted marketing, 
bulk-purchase campaigns). While our baseline and robustness specifications are 
designed to absorb short-run, place-specific shocks, via cell fixed effects, time 
fixed effects, county–month fixed effects, spatial standard errors, and an adja
cency exposure that includes neighbouring cells, the design cannot fully 
disentangle social from supply channels. We therefore interpret coefficients as 
reduced-form local diffusion effects. Reassuringly, evidence from a closely 
related Polish setting (residential PV) shows that adding explicit installer- 
supply controls and spatial diagnostics leaves peer-effect estimates material 
and significant, and that installer capacity expanded with demand rather than 
constraining it (hence supply did not drive spurious contagion). This suggests 
our estimates are not an artefact of omitted supply and, if anything, may be 
conservative with respect to the purely social component (Sokołowski, 2023).
14 We estimate the models with the Stata xtdpdgmm package by Kripfganz 

(2019).

15 We obtain reasonable correlation between wealth score and households 
self-declared income (Table B1 in Appendix B).
16 Detailed results and the model description are in Appendix B, Figure B1.
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individuals with high wealth follow each other in regions with lower 
inequalities increases by 0.017 (which translates to a 9.5 % additional 
installation probability attributable to peer effects in an average grid) 
while in the more unequal regions by 0.013 (associated with an overall 
6.6 % additional probability of installation in an average grid, Fig. 4
Panel B–C of Table B2, column 4). Similarly, the probability that in
dividuals with low wealth follow each other in regions with low in
equalities is 0.015, and in regions with high inequalities, 0.011 
(associated with 8.5 % and 5.8 % aggregate installation probability in
crease in an average grid, respectively). We interpret this trend as a 
reflection of the more fragmented social networks in economically un
equal societies, where the disparity might impede the flow of informa
tion and reduce the cohesive influence of peer groups (Rockenbauch and 
Sakdapolrak, 2017). Importantly, the coefficients estimated with the full 

sample fall between those obtained from high-inequality and 
low-inequality regions (Fig. 4). This emphasises the role of inequality 
levels in moderating the magnitude of the effects and suggests a sys
tematic relationship.

Third, the magnitude of peer effects depends significantly on the 
choice of the heating source and the wealth status of adopters (Fig. 5). 
We observe the strongest effects among less affluent individuals in re
gions characterised by low-income inequality. Biomass stove adopters 
showed the largest peer effects among individuals with low wealth, 
particularly in regions with low inequality (Table B3, Panel B). Specif
ically, for every additional biomass stove adopted by an individual with 
low wealth in such areas, the probability of a similar person adopting a 
new heating source increased by 0.016 pp (corresponding to an overall 9 
% additional installation probability attributable to peer effects in an 

Fig. 2. The allocation of individuals to wealth groups by income deciles.
Source: own elaboration based on CAPP data.

Fig. 3. Peer effects in the total sample and areas with low and high inequalities (pp change).
Source: own elaboration based on CAPP data. The figure presents the estimated probability of the following installation based on regressions in column 1 of Table B2
in the Appendix. The error bars depict the 95 % confidence intervals for the estimated changes in probability.
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Fig. 4. Peer effects in the total sample and areas with low and high inequalities (pp change).
Source: own elaboration based on CAPP data. The figure presents the estimated probability of the following installation based on regressions in column 2–4 of 
Table B2 in the Appendix. The error bars depict the 95 % confidence intervals for the estimated changes in probability.

Fig. 5. Peer effects across wealth groups, heating sources and areas with low and high inequalities (pp change).
Source: own elaboration based on CAPP data. The figure presents the estimated probability of the following installation based on regressions in Table B3 in the 
Appendix. The error bars depict the 95 % confidence intervals for the estimated changes in probability.
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average grid). It represents a substantial increase compared to the 0.010 
pp effect observed in high-inequality areas (corresponding to 4.9 % 
aggregate additional installation probability attributable to peer effects 
in an average grid). In contrast, wealthy individuals adopting heat 
pumps exhibited consistent but lower peer effects, which did not vary 
significantly across regions with different levels of inequality (Table B3, 
Panels B and C, column 2). We see it as an indicator that amplifying peer 
effects in low-inequality areas primarily benefits low-income adopters 
(Baynes et al., 2015).

3.1. Robustness

We conduct a series of tests to verify the stability and reliability of 
our model’s specification under different time lags. Initially, we have 
utilised quarterly data. However, we expand our examination by 
incorporating an alternative monthly time lag to ensure our results are 
not overly sensitive to this particular choice. It is important to note that 
the magnitude of the coefficients in autoregressive models is strongly 
related to the proximity of the lag to the original event. Closer lags 
represent more recent events that strongly influence the current state. In 
contrast, longer lags can accumulate more noise over time, making it 
harder for the model to distinguish between meaningful signals and 
random fluctuations. Therefore, we expect monthly lags to have higher 
coefficients than quarterly lags.

The significance of the results generally persists. For instance, peer 
effects for all individuals in the total sample are robust across both time 
lags (Panel A of Tables B2 and B7, column 1 in Appendix B). Impor
tantly, the difference between the magnitude of the effects between low 
and high inequality areas persists in favour of the former ones (Panels B 
and C of Table B6 in Appendix B).

When using a monthly lag in different income groups across regions 
with varying inequality levels, peer effects remain significant across all 
individuals, demonstrating robust social influence even on a short-term 
basis (Table B6 in Appendix B). High-income groups across different 
inequality levels consistently exhibit strong peer effects, indicating, e.g. 
that their financial flexibility might allow for quicker adjustments to 
peer adoption behaviours (Panels A and B of Table B6, column 4 in 
Appendix B).

The month lag in the context of different heating sources and 
regional inequality levels shows that the results remain robust across 
different specifications. For low-income groups using heat pumps, the 
one-month lag reveals a more pronounced effect in specific contexts, 
such as high inequality areas, where peer effects remain significant in 
the shorter term (Table B7, column 1 in Appendix B). The results for 
high-income groups using heat pumps and biomass remain robust 
(Table B7, columns 2 and 4 in Appendix B).

Overall, the alternative lags confirm the positive peer effects 
observed in the quarterly data and show enhanced significance. How
ever, choosing the appropriate lag is essential to estimating the proper 
size of the peer effect. Therefore, we use quarterly lags as baseline 
specifications based on the programme’s legal set-up.

Subsequently, we divide individuals into low, medium, and high- 
income groups according to self-declared income instead of wealth 
score (Tables B4 and B5 in Appendix B). The results are consistent with 
our preferred specification and confirm the main findings.

Next, we aggregate the installations to the municipality level, rather 
than 1-km squares (Table B8 in Appendix B). In the total sample, one 
additional installation increases the probability of subsequent installa
tion by 0.0013 pp, which corresponds to an additional 1.8 % probability 
of installation attributable to peer effects within the average 1-km grid 

during program duration. Furthermore, in municipalities with low 
inequality, each additional installation raises the probability of another 
installation by 0.0017 percentage points, while in high-inequality mu
nicipalities the effect is 0.0009 percentage points. These effects corre
spond to 1.6 % and 1.5 % higher installation probabilities attributable to 
peer effects during the program in an average grid, respectively. As 
expected, these magnitudes are lower than our main 1-km grid results. 
Aggregating to a larger spatial unit dilutes local exposure, so peer ef
fects, likely operating at shorter distances, appear weaker at the mu
nicipality scale.

Finally, we re-estimated the model as a random-effects spatial panel 
on the municipality level, augmenting the specification with a 
contemporaneous spatially lagged dependent variable WSH

iq (first-order 
contiguity, row-standardised). The spatial term is positive and precisely 
estimated in the full sample, indicating that adoption shares co-move 
across adjacent cells within a quarter (Table B9 in Appendix B). Split 
by inequality, the spatial association remains significant but differs in 
magnitude: ≈0.042 in low-inequality municipalities (p ≈ 0.072) and 
≈0.002 in high-inequality municipalities (p < 0.911). We read this as 
stronger contemporaneous clustering where inequality is low, plausibly 
reflecting socio-spatial sorting, rather than stronger forward-looking 
social influence. Our baseline identification relies on lagged neigh
bourhood exposure and dynamic GMM, which avoids simultaneity and 
shows that the causal peer effect is larger in low-inequality areas (Sec
tion Results). At the same time, the spatial panel with WSH

iq captures the 
same-period co-movement that blends social interaction with common 
shocks. Consequently, the spatial estimates complement the main 
finding that inequality attenuates peer influence.

4. Discussion and conclusions

In this paper, we investigated the adoption dynamics of new tech
nologies based on peer effects. To study this relation, we used the 
example of the Clean Air Priority Programme, Europe’s third-largest 
retrofit subsidy initiative, aimed at improving air quality and reducing 
greenhouse gas emissions in Poland. We found significant peer effects 
within the same wealth groups, especially in regions with low economic 
disparities. These findings suggest that economic inequality is an 
essential factor in the effectiveness of peer networks in promoting 
technology adoption, which has solid scientific and practical 
implications.

Our results suggest that progressive support mechanisms within 
energy transition programs, such as the Clean Air Priority Program 
(CAPP), could significantly reduce barriers to adoption. Subsidies and 
financial incentives tailored to income levels, such as pre-financing 
schemes, can make sustainable technologies accessible to a broader 
demographic, fostering a more equitable energy transition (Hanke et al., 
2023). From a policy perspective, enhancing the progressivity of support 
mechanisms facilitates adoption among lower-income groups and 
strengthens peer network effects across diverse socioeconomic strata 
(Tozer et al., 2020). This dual benefit ensures a more balanced diffusion 
of technologies, potentially accelerating the transition to sustainable 
energy sources. Furthermore, our study contributes to the discourse on 
evidence-based policymaking by shedding light on the intersection of 
socioeconomic inequality and environmental policy effectiveness (Vona, 
2023), and it provides insights for designing retrofit programs that 
promote social equity and environmental resilience. A more effective 
strategy in areas with low economic inequality would involve leveraging 
social capital networks to support the energy transition (e.g., 
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neighbourhood organisations, parishes), as technology adoption tends 
to occur more rapidly in such contexts. In contrast, in areas with higher 
economic inequalities, a more effective approach to promoting the 
adoption of renewable energy sources would likely involve individu
alised, targeted outreach to individuals capable of replacing their 
heating sources.

Our study contributes to creating evidence-based policies focused on 
the role of socioeconomic factors in environmental policy and technol
ogy adoption. By highlighting the role of economic inequalities and the 
potential of peer effects as catalysts for sustainable change, we underline 
the need for policy interventions that promote technological innovation 
and foster social inclusivity and equity. At the European level, in
struments like the Social Climate Fund, later transposed to the national 
level through technological subsidies and direct support, can play a 
crucial role. Directing the fund toward income support for vulnerable 
households, rather than exclusively toward technological subsidies, can 
mitigate the risk of benefits disproportionately favouring wealthier 
groups. By aligning financial support with the needs of low-income 
populations, policymakers can reduce inequities and enhance the 
overall impact of energy transition initiatives (European Parliament and 
the Council of the European Union, 2024).

Our findings suggest that centralising data collection and oversight 
could enhance the implementation and monitoring of programmes like 
CAPP. At the beginning of 2025, fragmented administration across 
multiple institutions risks data inconsistencies and procedural in
efficiencies. A single coordinating entity could streamline processes, 
ensure data quality, and maintain public trust. Broader discussions on 
centralisation and coordination within environmental funding systems 
are warranted to optimise program effectiveness. However, the CAPP 
programme was stopped at the end of 2024 and is set to be restarted in 
2025 with revised rules. Preliminary reports and press releases suggest 
that the new structure might shift from progressive to regressive support 
mechanisms, favouring wealthier participants and reducing access to 
economically vulnerable groups (Murator, 2025). This reversal un
dermines the programme’s earlier systematic efforts to foster equity and 
inclusivity in the energy transition and risks exacerbating existing in
equalities. Discontinuing such a crucial program or maintaining it 
without its progressive features creates significant disruption, poten
tially stalling progress in adoption rates, weakening peer network ef
fects, and slowing the diffusion of sustainable technologies. Our results 
strongly support prioritising an equitable programme design and 
ensuring any changes do not marginalise participants with low incomes.

We acknowledge our study limitations. We recognise that the scope 
of our analysis is confined to the CAPP and its participants, which may 
not fully reflect the diversity of contexts influencing technology adop
tion in other settings. For instance, smaller financial schemes or regu
latory approaches may yield different dynamics. Furthermore, while we 
examined peer effects through observed patterns of technology uptake, 
this approach does not capture the full complexity of social interactions 
and individual motivations that influence decisions. Our approach 
deliberately estimates local spatial peer effects, not a total network ef
fect. Because the exposure metric is spatial, it does not observe non- 

spatial ties (kinship, workplaces, online groups). We therefore inter
pret coefficients as the effect of local, in-person visibility, which is the 
most significant policy relevance channel for place-based programmes 
and municipal communication. This scope implies estimates may be a 
conservative lower bound if out-of-cell ties transmit influence. Addi
tionally, our identification relies on observable neighbourhood change 
(e.g., removal of coal stoves, external unit visibility for heat pumps, 
contractor presence). While consistent with normative diffusion, we 
cannot directly verify awareness at the household level. We therefore 
avoid mechanistic claims and frame results as behavioural responses 
consistent with local exposure. Next, our spatial exposure may co-move 
with installer activity; despite spatial errors, and an adjacency exposure, 
we cannot fully disentangle social from supply channels, so estimates are 
reduced-form. Although our wealth score reduces classical income- 
related endogeneity, it cannot eliminate correlation with unobserved 
household traits (e.g., environmental attitudes, risk preferences, access 
to information, social networks) or neighbourhood social capital (e.g., 
local leaders, civic groups). These constructs are not observed in the 
CAPP data, so part of the estimated heterogeneity by wealth may reflect 
selection on unobservables. Future research should integrate qualitative 
social science methods, including interviews with program stakeholders, 
to provide richer insights into these dynamics. Finally, while using a 
wealth score mitigates concerns about income-associated endogeneity, 
it does not allow for causal inference regarding the drivers of hetero
geneity. Instead, we aimed to identify differential patterns across wealth 
categories. One could address this limitation by employing methods that 
leverage exogenous variation in economic factors to establish causal 
relationships.
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Appendix A. – Methodological details

Fig. A1. Evolution of the CAPP financial criteria
Source: own elaboration based on CAPP documentation

Appendix B. – Additional results and descriptive statistics

Fig. B1. Likelihood and the distribution of program participation by income quintile and program timing
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Source: own elaboration based on CAPP data.
Note: likelihoods are normalised with Q3.

The characteristics of program participants differ significantly in terms of the timing of program participation. It is the consequence of tightening 
up the rules of participation in the program. Interestingly, the first income quintile group was two times less likely to be late adopters than the third. 
Relatively high-income participants dominated the programme’s first stage, resulting from the lack of a household income limit for participation in 
CAPP. Over 50 % of early adopters (i.e., those who changed their heating source in the programme’s first year, 2018) belonged to the fifth income 
quintile (Figure B1, left and right panel). The likelihood that an early technology adopter belonged to the fifth income quintile was almost four times 
higher than that they belonged to the third quintile (Fig. 3, left panel). The differences between the remaining quintile groups were minor, but higher 
quintile groups (Q5) were slightly more likely to change the heating source than lower quintile groups (Q1-Q2). Most participants at that stage were 
follower adopters (those who changed the heating source between 2019 and 2021; Fig. 2, bottom panel). The differences among follower adopters 
were negligible in terms of likelihood, meaning that none of the income groups were dominant at this stage of the program (Figure B1, left panel). The 
likelihood that a late adopter (those who changed the heating source in 2022) belongs to the fifth quintile is about ten times lower than that she 
belongs to the third quintile (Figures B1, left and right).17

Table B1 
Correlation between wealth score and household characteristics

Low wealth High wealth

Low Gini region − 0.222** (0.094) − 0.498*** (0.093)
High Gini region − 0.336*** − 0.118 0.524*** (0.095)
Heating source – biomass stove − 0.041 (0.034) − 0.960*** (0.032)
Low Gini region # Heating source – biomass stove 0.037 (0.055) − 0.028 (0.058)
High Gini region # Heating source – biomass stove − 0.072 (0.067) − 0.069 (0.055)
Income decile: 1st 0.335*** (0.061) 0.111** (0.056)
Income decile: 2nd 0.069 (0.066) − 0.244*** (0.064)
Income decile: 3rd 0.152** (0.065) − 0.173*** (0.062)
Income decile: 4th 0.131** (0.065) − 0.137** (0.061)
Income decile: 6th − 0.026 (0.070) 0.117* (0.061)
Income decile: 7th 0.107 (0.074) 0.256*** (0.065)
Income decile: 8th − 0.000 (0.079) 0.300*** (0.068)<
Income decile: 9th − 0.113 (0.122) 0.617*** (0.099)
Income decile: 10th − 0.818*** (0.193) 1.347*** (0.119)

Source: own elaboration based on 
CAPP data.

Fig. B2. The distribution of monthly income by county in the sample and the whole country in 2018
Source: Own elaboration based on CAPP and Statistics Poland data.

17 Regarding subsidy structures, the maximum level of the subsidy changed several times during the program (Appendix A, Figure A1). For individual technologies, 
the program evolved from technological neutrality in 2019 to a strong preference for heat pumps and biomass. We note that the maximum subsidy level during the 
analysed period reached even PLN 135,000 [applied to replacing a heat source with a heat pump + PV combined with energy retrofitting, under the assumption of 
the highest level of support]. For biomass boilers, the maximum possible subsidy (also with thermal modernisation and PV) was proportionally lower [115,000 PLN], 
so it was possible to get more subsidy for more expensive technology (HP). However, since VAT is non-eligible in CAPP, even a 100 % subsidy effectively favoured 
more affluent households able to cover this.
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Fig. B3. Distribution of age groups in the sample and the whole country in 2022
Source: Own elaboration based on CAPP and Statistics Poland data.

Fig. B4. Distribution of building construction years in the sample and the whole country in 2022
Source: Own elaboration based on CAPP and Statistics Poland data.

Fig. B5. The average self-declared income by heating source and area of residence (in thousands of Euro)
Source: own elaboration based on CAPP data.
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Fig. B6. Number of installations by heating source and area of residence
Source: own elaboration based on CAPP data.

Table B2 
Peer effects by income group and regions with high/low inequalities – individuals grouped by wealth score

Share of adopters: (1) (2) (3) (4)

Total sample Low wealth Medium wealth High wealth

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
All individuals 0.882*** ​ ​ ​

(0.023) ​ ​ ​
Low wealth ​ 0.834*** ​ ​

​ (0.032) ​ ​
Medium wealth ​ ​ 0.851*** ​

​ ​ (0.024) ​
High wealth ​ ​ ​ 0.921***

​ ​ ​ (0.029)
Panel B: Low inequality areas ​ ​ ​ ​
All individuals 0.928*** ​ ​ ​

(0.017) ​ ​ ​
Low wealth ​ 0.864*** ​ ​

​ (0.036) ​ ​
Medium wealth ​ ​ 0.855*** ​

​ ​ (0.027) ​
High wealth ​ ​ ​ 0.960***

​ ​ ​ (0.008)
Panel C: High inequality areas ​ ​ ​ ​
All individuals 0.907*** ​ ​ ​

(0.028) ​ ​ ​
Low wealth ​ 0.801*** ​ ​

​ (0.051) ​ ​
Medium wealth ​ ​ 0.827*** ​

​ ​ (0.047) ​
High wealth ​ ​ ​ 0.952***

​ ​ ​ (0.021)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B3 
Peer effects by income group and heating source, and regional inequality level – individuals grouped by wealth score

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
Low incomes (heat pump) 0.819*** ​ ​ ​

(0.057) ​ ​ ​
High incomes (heat pump) ​ 0.936*** ​ ​

​ (0.026) ​ ​
Low incomes (biomass) ​ ​ 0.867*** ​

​ ​ (0.035) ​
High incomes (biomass) ​ ​ ​ 0.815***

​ ​ ​ (0.023)

(continued on next page)
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Table B3 (continued )

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)

Panel B: Low inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.887*** ​ ​ ​

(0.029) ​ ​ ​
High incomes (heat pump) ​ 0.945*** ​ ​

​ (0.025) ​ ​
Low incomes (biomass) ​ ​ 0.911*** ​

​ ​ (0.087) ​
High incomes (biomass) ​ ​ ​ 0.788***

​ ​ ​ (0.068)
Panel C: High inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.694*** ​ ​ ​

(0.125) ​ ​ ​
High incomes (heat pump) ​ 0.946*** ​ ​

​ (0.020) ​ ​
Low incomes (biomass) ​ ​ 0.685*** ​

​ ​ (0.053) ​
High incomes (biomass) ​ ​ ​ 0.860***

​ ​ ​ (0.023)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B4 
Peer effects by income group and regions with high/low inequalities – individuals grouped by self-declared income

Share of adopters: (1) (2) (3) (4)

Total sample Low income Medium income High income

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
All individuals 0.882*** ​ ​ ​

(0.023) ​ ​ ​
Low incomes ​ 0.911*** ​ ​

​ (0.026) ​ ​
Medium incomes ​ ​ 0.849*** ​

​ ​ (0.020) ​
High incomes ​ ​ ​ 0.910***

​ ​ ​ (0.040)
Panel B: Low inequality areas ​ ​ ​ ​
All individuals 0.928*** ​ ​ ​

(0.017) ​ ​ ​
Low incomes ​ 0.929*** ​ ​

​ (0.024) ​ ​
Medium incomes ​ ​ 0.881*** ​

​ ​ (0.012) ​
High incomes ​ ​ ​ 0.927***

​ ​ ​ (0.019)
Panel C: High inequality areas ​ ​ ​ ​
All individuals 0.907*** ​ ​ ​

(0.028) ​ ​ ​
Low incomes ​ 0.883*** ​ ​

​ (0.020) ​ ​
Medium incomes ​ ​ 0.891*** ​

​ ​ (0.031) ​
High incomes ​ ​ ​ 0.936***

​ ​ ​ (0.064)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B5 
Peer effects by income group and heating source, and regional inequality level – individuals grouped by self-declared income

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)<

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
Low incomes (heat pump) 0.876*** ​ ​ ​

(0.029) ​ ​ ​
High incomes (heat pump) ​ 0.938*** ​ ​

​ (0.057) ​ ​
Low incomes (biomass) ​ ​ 0.874*** ​

​ ​ (0.028) ​
High incomes (biomass) ​ ​ ​ 0.832***

(continued on next page)
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Table B5 (continued )

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)<

​ ​ ​ (0.058)
Panel B: Low inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.937*** ​ ​ ​

(0.029) ​ ​ ​
High incomes (heat pump) ​ 0.956*** ​ ​

​ (0.007) ​ ​
Low incomes (biomass) ​ ​ 0.961*** ​

​ ​ (0.014) ​
High incomes (biomass) ​ ​ ​ 0.740***

​ ​ ​ (0.005)
Panel C: High inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.885*** ​ ​ ​

(0.032) ​ ​ ​
High incomes (heat pump) ​ 0.937*** ​ ​

​ (0.084) ​ ​
Low incomes (biomass) ​ ​ 0.823*** ​

​ ​ (0.039) ​
High incomes (biomass) ​ ​ ​ 0.467*

​ ​ ​ (0.245)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B6 
Peer effects by income group and regions with high/low inequalities – one month lag

Share of adopters: (1) (2) (3) (4)

Total sample Low income Medium income High income

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
All individuals 0.962*** ​ ​ ​

(0.004) ​ ​ ​
Low wealth ​ 0.967*** ​ ​

​ (0.012) ​ ​
Medium wealth ​ ​ 0.944*** ​

​ ​ (0.012) ​
High wealth ​ ​ ​ 0.965***

​ ​ ​ (0.008)
Panel B: Low inequality areas ​ ​ ​ ​
All individuals 0.967*** ​ ​ ​

(0.005) ​ ​ ​
Low wealth ​ 0.957*** ​ ​

​ (0.013) ​ ​
Medium wealth ​ ​ 0.969*** ​

​ ​ (0.007) ​
High wealth ​ ​ ​ 0.983***

​ ​ ​ (0.002)
Panel C: High inequality areas ​ ​ ​ ​
All individuals 0.958*** ​ ​ ​

(0.006) ​ ​ ​
Low wealth ​ 0.945*** ​ ​

​ (0.015) ​ ​
Medium wealth ​ ​ 0.941*** ​

​ ​ (0.016) ​
High wealth ​ ​ ​ 0.960***

​ ​ ​ (0.007)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B7 
Peer effects by income group and heating source, and regional inequality level – one month lag

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)

Peer effects: ​ ​ ​ ​
Panel A: Total sample ​ ​ ​ ​
Low incomes (heat pump) 0.946*** ​ ​ ​

(0.010) ​ ​ ​
High incomes (heat pump) ​ 0.976*** ​ ​

​ (0.017) ​ ​
Low incomes (biomass) ​ ​ 0.980*** ​

​ ​ (0.049) ​

(continued on next page)
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Table B7 (continued )

Share of adopters: (1) (2) (3) (4)

Low incomes (heat pump) High incomes (heat pump) Low incomes (biomass) High incomes (biomass)

High incomes (biomass) ​ ​ ​ 0.978***
​ ​ ​ (0.055)

Panel B: Low inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.966 ​ ​ ​

(10.113) ​ ​ ​
High incomes (heat pump) ​ 0.979*** ​ ​

​ (0.002) ​ ​
Low incomes (biomass) ​ ​ 0.966*** ​

​ ​ (0.076) ​
High incomes (biomass) ​ ​ ​ 0.914***

​ ​ ​ (0.002)
Panel C: High inequality areas ​ ​ ​ ​
Low incomes (heat pump) 0.962*** ​ ​ ​

(0.009) ​ ​ ​
High incomes (heat pump) ​ 0.972*** ​ ​

​ (0.030) ​ ​
Low incomes (biomass) ​ ​ 0.946*** ​

​ ​ (0.044) ​
High incomes (biomass) ​ ​ ​ 0.775***

​ ​ ​ (0.086)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B8 
Peer effects by regions with high/low inequalities at municipality level

Share of adopters: (1) (2) (3)

Total sample Low inequality municipalities High inequality municipalities

Peer effects: ​ ​ ​
Panel A: Total sample ​ ​
All individuals 0.986*** 0.996*** 0.844***

(0.010) (0.005) (0.060)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in parentheses.

Table B9 
Random-effects spatial panel (SAR) at municipality level

Variable: (1)

Total sample

WSH
iq 0.152***

(0.013)
Municipality with low inequality level 0.043*

(0.024)
Municipality with high inequality level 0.003

(0.024)
Constant 0.039***

(0.014)

Notes: ***p < 0.01, **p < 0.05, *p < 0.1 Standard errors in 
parentheses.

Data availability

Data will be made available on request.
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