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Abstract

We develop a data-driven framework for analyzing how scientific concepts evolve through
their empirical in-text frequency distributions in large text corpora. For each concept, the
observed distribution is paired with a maximum entropy equilibrium reference, which
takes a generalized Boltzmann form determined by two measurable statistical moments.
Using data from more than 500,000 physics papers (about 13,000 concepts, 2000–2018), we
reconstruct the temporal trajectories of the associated MaxEnt parameters and entropy
measures, and we identify two characteristic regimes of concept dynamics, stable and
driven, separated by a transition point near criticality. Departures from equilibrium are
quantified using a residual-information measure that captures how much structure a con-
cept exhibits beyond its equilibrium baseline. To analyze temporal change, we adapt the
Hatano–Sasa and Esposito–Van den Broeck decomposition to discrete time and separate
maintenance-like contributions from externally driven reorganization. The proposed effi-
ciency indicators describe how concepts sustain or reorganize their informational structure
under a finite representational capacity. Together, these elements provide a unified and
empirically grounded description of concept evolution in scientific communication, based
on equilibrium references, nonequilibrium structure, and informational work.

Keywords: nonequilibrium thermodynamics; thermodynamics of information; Hatano–
Sasa decomposition; irreversible work; information efficiency; residual entropy; maximum
entropy principle; instantaneous fixed point (IFP); entopy-energy bond; phase transition;
finite systems

1. Introduction
Entropy occupies a central position in both physics and information theory as a

measure of multiplicity, uncertainty, and disorder. Since the work of Boltzmann and
Gibbs, thermodynamic entropy has quantified the number of microscopic configurations
compatible with a macroscopic state. Shannon [1] extended this concept to symbolic
communication, defining information entropy as a measure of uncertainty within message
ensembles. Jaynes [2] later showed that the two are not merely analogous but formally
connected: statistical mechanics can be reformulated as an inference procedure based on
the maximum entropy (MaxEnt) principle, in which physical laws provide the relevant
macroscopic constraints. This insight laid the foundation of modern statistical inference
and has inspired extensive research linking informational and thermodynamic quantities
across physics, chemistry, biology, and cognitive systems [3–5].
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However, the relationship between thermodynamic and information-theoretic entropy
remains a topic of conceptual debate [6,7]. Thermodynamic entropy, rooted in classical
physics, measures the logarithm of the number of microstates compatible with a set of
macroscopic observables, whereas Shannon entropy quantifies uncertainty associated with
a probability distribution. Although their mathematical forms coincide, their physical
interpretation aligns only when the probabilities in Shannon’s expression correspond to
a MaxEnt equilibrium distribution—the least biased distribution consistent with known
constraints. In this sense, Jaynes’s identification of the two entropies is conditional, not uni-
versal. As several authors emphasize [8,9], entropy depends on the descriptive level adopted
by the observer. Caticha’s entropic-inference framework [10,11] clarifies that the quantity
appearing in the exponent of a Boltzmann distribution is simply the observable whose
expectation value is constrained in the MaxEnt problem; its interpretation—physical or
informational—depends on the modeling context. Gao et al. [12] formalized this connection
by showing that thermodynamic and Shannon entropy coincide exactly when the underly-
ing distribution is a generalized Boltzmann distribution, while recent work demonstrates
that Clausius entropy can be derived directly from Boltzmann–Gibbs–Shannon entropy
under equilibrium assumptions [13]. These results delineate the conditions under which
thermodynamic interpretations of informational models are mathematically grounded.

An essential insight from modern nonequilibrium thermodynamics is provided via
Landauer’s principle [14], which establishes that logically irreversible transformations of
information have an intrinsic thermodynamic cost. In its classical formulation, reducing the
Shannon entropy of a system—such as erasing one bit—requires a corresponding increase
in environmental entropy, thereby ensuring non-negative total entropy production. Con-
temporary developments in stochastic thermodynamics [4,5,15–19] interpret this relation as
a direct consequence of the second law applied to information-bearing degrees of freedom:
any operation that decreases uncertainty must be offset with compensating dissipation.
Along with Brillouin’s notion of negentropy [20], Landauer’s principle illustrates a general
structure in which entropy balances link informational and thermodynamic descriptions.
Although our framework does not involve physical heat flows, these results establish a
coherent informational–thermodynamic perspective in which entropy balances constrain
transformations of structured information. This perspective motivates the use of entropy-
based measures and potential-like quantities when analyzing how empirical information is
organized and reorganized in large corpora.

Within this informational–thermodynamic perspective, scientific communication can
be regarded as an open informational system in which symbolic units and concepts appear
with varying frequency across documents. Because each document provides only a finite
representational context, the corpus distributes its limited expressive capacity unevenly
among concepts: some receive substantial attention, while others appear only sparsely.
This scarcity drives structural constraints that shape how knowledge propagates, leading
to the empirical observation that concept-frequency distributions in scientific corpora are
consistently heavy-tailed and follow power-laws [21–23]. This phenomenon is not unique
to text; similar heavy-tailed patterns are endemic to a variety of complex systems, ranging
from social collaboration and urban growth to the distribution of wealth and the topology
of biological networks [24–26].

The maximum entropy (MaxEnt) principle provides the direct theoretical basis for
a thermodynamic interpretation of these heavy-tailed distributions. The Random Group
Formation (RGF) framework proposed by Baek, Bernhardsson, and Minnhagen [21] is
a key model in this context. While RGF uses a complex cost function derived from a
mutual entropy minimization procedure, its resulting power–exponential distribution,
N(k) ∝ e−bk/kγ, where N(k) is the number of groups with k elements, is analytically
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derived from a minimal information cost constraint. Crucially, the functional form of
this outcome is shown to be equivalent to applying the MaxEnt method with a constraint
on the mean logarithmic group size, ⟨ln k⟩. This logarithmic term, ln k, associated with
the group size k, quantifies the localization cost required to specify an element within
it. This rigorous equivalence is formalized by Visser’s analysis [27], which demonstrates
that generalized RGF distributions can be precisely derived from the MaxEnt method
for Shannon entropy by applying constraints to both the mean group size, ⟨k⟩, and the
logarithmic group size, ⟨ln k⟩. Together, these results show that heavy-tailed frequency
distributions have a well-defined MaxEnt equilibrium form determined by the first mo-
ment and the mean logarithmic size, providing a principled baseline for interpreting
empirical distributions.

A few studies have proposed thermodynamic or entropy-based frameworks for ana-
lyzing social communication or symbolic systems. Among these, the work by Peng [28]
offers an important early attempt to draw an analogy between social collaboration and
Boltzmann statistics. However, Peng’s formulation relies on simplifying assumptions that
differ from the MaxEnt-based approach adopted here. In particular, the entropy is defined
with respect to a combinatorial upper bound, rather than being derived from empirical
constraints on the underlying frequency distribution. The logarithmic cost term ln k in-
troduced in the model (where k denotes the number of edits to a given Wikipedia page)
is chosen to reproduce the observed heavy-tailed pattern, but it does not emerge from a
constrained entropy-maximization procedure such as those used in later RGF and MaxEnt
formulations. As a consequence, Peng’s model provides a useful qualitative analogy but
offers limited guidance for analyzing empirical distributions over time or for characterizing
their nonequilibrium evolution under external influences.

A recent approach by Giardini and daCunha [29] addresses time-based evolution
by developing a Thermodynamics of Innovation model. However, this framework fo-
cuses on cumulative adoption quantities over time, constructing a canonical ensemble
to model the temporal evolution of the aggregate population using Gompertz-like and
Maxwell–Boltzmann-like shapes. While successful at describing time-series dynamics,
this cumulative focus is orthogonal to the need for a frequency-resolved (cross-sectional)
analysis of heterogeneous concepts within the literary corpus.

More broadly, the existing approaches do not provide a data-driven, frequency-
resolved thermodynamic framework for symbolic communication systems. In particular,
no prior work derives equilibrium reference states directly from empirical term-frequency
distributions or establishes a principled way to compare these empirical states with their
MaxEnt equilibrium counterparts, nor does it model their temporal evolution within an
open-system, grand-canonical formalism. Consequently, current models cannot quan-
tify nonequilibrium structure, entropy production, or the thermodynamic efficiency of
informational change at the level of individual concepts.

The present work addresses this gap by developing a thermodynamic frame-
work in which each scientific concept is treated as an open, frequency-resolved in-
formational system. The empirical term-frequency distribution defines the concept’s
nonequilibrium mesoscopic state, while a MaxEnt-derived generalized Boltzmann distri-
bution provides the corresponding equilibrium reference. The discrepancy between these
two distributions—captured via residual entropy and a free-energy–like gap—quantifies
the informational structure and stability of each concept. By applying a discrete-time ver-
sion of the Hatano–Sasa [30] and Esposito–Van den Broeck [4] decomposition, we further
separate maintenance-like (housekeeping) contributions from externally driven reorgani-
zation. This equilibrium/nonequilibrium pairing is, to our knowledge, new to the study
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of scientific communication and forms the backbone of our analysis of concept evolution,
stabilization, and informational efficiency.

The remainder of the paper is organized as follows. Section 2 introduces the data and
formalizes the thermodynamic framework, including the MaxEnt construction of equilib-
rium reference states, the definition of residual entropy and free-energy measures, and
the Hatano–Sasa/Esposito–Van den Broeck decomposition for nonequilibrium evolution.
Section 3 presents an empirical analysis of more than 11,000 scientific concepts, detailing
their trajectories in thermodynamic state space, identifying characteristic equilibration and
driving regimes, and evaluating dissipation and efficiency patterns. Section 4 discusses
the theoretical and empirical implications of the proposed framework for understanding
concept stabilization and semantic innovation.

2. Materials and Methods
2.1. Database Description

We used a corpus of 451,524 English-language research articles from the High Energy
Physics and Astronomy sections of arXiv (2000–2018). Each document contains full text
and standard metadata and was annotated with term-frequency counts for 13,945 scientific
concepts drawn from a curated ontology [31–33].

Related studies have analyzed this corpus for concept co-occurrence structure, innova-
tion emergence, and topic organization [22,34,35]. Here, we use the same concept-usage
data but develop a thermodynamic, MaxEnt-based description, focusing on equilibrium
reference states, residual information, and nonequilibrium informational work.

2.2. Thermodynamic Framework

To formalize our model, we consider the scientific concept c and define its empirical
support at time t as the collection of relevant documents that contain at least one mention of
the concept. The number of such documents is denoted as Nc(t) among the total number of
ND > Nc documents in the corpus. If no further information is known beyond whether a
concept appears in the document or not [28], then a uniform probability, 1/Nc(t), can be as-
signed to each document. This yields a maximum entropy value of ln Nc(t), representing the
highest possible uncertainty under this minimal description [36,37]. In this representation,
each document is associated with a single indistinguishable microstate of a concept.

More detailed information on a concept state arises from the in-text term frequency
analysis, where each frequency class, k ∈ Z+, defines a mesostate, a coarse-grained represen-
tation of the underlying microstates of individual concept mentions [38]. The corresponding
empirical probability, p(k, t) = Nc(k, t)/Nc(t), is proportional to the number, Nc(k, t), of
documents that mention the concept c exactly k times until time t. The Shannon entropy of
this mesoscopic description,

S(t) = −
∞

∑
k=1

p(k, t) ln p(k, t), (1)

reflects additional knowledge about the structural organization of p(k, t) and, therefore, is
typically smaller than the maximal value ln Nc(t) corresponding to uniform ignorance.

In the early stage of its appearance, a concept is supported by only a small number
of documents, and its mesostate, p(k, t), is correspondingly sparse and almost identical
to its microstate configuration. As the concept accumulates sufficient usage across docu-
ments, the empirical distribution p(k, t) stabilizes and develops a broad, approximately
heavy-tailed form. This enables a power–exponential fit, p(k, t)∝ k−βt e−λtk, defining the
concept’s instantaneous fixed point (IFP) [38]. Extensive empirical comparisons with other
heavy-tailed distributions performed in our previous work [23] show that this distribution
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provides the tightest upper envelope (maxentropic bound) across the entire observed range
of mesostate Shannon entropies.

As was shown by Visser [27], the distribution parameters β and λ can be obtained
from the maximization of Shannon entropy S under two empirical constraints: the mean
frequency ⟨k⟩p and the logarithmic moment ⟨ln k⟩p, both calculated from the observed
empirical distribution p(k, t). This constrained maximization yields the following [22]:

π(k, t; β, λ) =
1
Z

e−λk

kβ
, Z =

∞

∑
k=1

e−λk

kβ
= Liβ(e−λ), (2)

where Z is the normalization constant expressed through the polylogarithm function
Liβ(e−λ), and β, λ > 0 are Lagrange multipliers determined as follows:

⟨k⟩p = ⟨k⟩π =
Liβ−1(e−λ)

Liβ(e−λ)
, ⟨ln k⟩p = ⟨ln k⟩π = −

∂βLiβ(e−λ)

Liβ(e−λ)
. (3)

The entropy of the resulting macrostate then follows as [22]

SIFP = −
∞

∑
k=1

π(k, t) ln π(k, t) (4)

= ln Z +⟨ln k⟩p + λ⟨k⟩p.

The distribution π(k, t) belongs to the class of generalized Boltzmann distributions,
that is, exponential-family distributions obtained as MaxEnt solutions under constraints on
⟨ln k⟩ and ⟨k⟩. In the entropic–inference viewpoint [2,10,11], the observables that appear in
the exponent play the role of effective “energies”, and the associated Lagrange multipliers
are their conjugate intensive parameters. In our case, the constrained quantity E(k) = ln k
acts as an internal informational energy, while k controls the occupancy of the concept. The
mean values

U = ⟨ln k⟩π , N = ⟨k⟩π

therefore represent, respectively, the internal informational energy and the mean number
of logical particles (concept mentions) in the ensemble. The normalization constant Z plays
the role of a generalized partition function for this open informational system.

For systems described by generalized Boltzmann distributions, the Gibbs–Shannon
entropy coincides (up to an additive constant) with the thermodynamic entropy in the for-
mal sense demonstrated in Refs. [12,13,39]. Under this formal equivalence, it is convenient
to introduce effective intensive parameters

T =
1
β

, µ = − λ

β
,

which mirror, at the level of Legendre structure, the roles played by temperature and
chemical potential in physical thermodynamics. We emphasize that T and µ here are
informational intensive parameters, not physical quantities.

With this notation, the thermodynamic–like potential takes the standard grand-
canonical form

Stherm = kBSIFP = kB(ln Z + βU − µβN), (5)

providing a consistent set of state variables for analyzing the equilibrium and nonequilib-
rium properties of concept–frequency distributions.

The notion of internal equilibrium is essential: although concept usage evolves over
time and the empirical distribution is rarely at equilibrium globally, within each time
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window, the IFP defines a locally equilibrated reference state that maximizes entropy under
the empirical constraints. This is precisely the regime in which generalized Boltzmann
distributions acquire a consistent thermodynamic structure [12,39,40].

2.3. Residual Entropy and Free Energy

We refer to a concept as being in equilibrium when its empirical entropy, S, coincides
with the corresponding MaxEnt value SIFP. In this regime, the macroscopic descriptors
(U, N, T, µ) inferred from the MaxEnt distribution remain effectively constant, and the
informational structure of the concept is stabilized.

Departures from this equilibrium reference are quantified by the residual entropy

R(t) = SIFP(t)− S(t) = DKL(p(t)∥π(t)) = ∑
k

p(k, t) ln
p(k, t)
π(k, t)

≥ 0, (6)

which measures the additional information required to specify the empirical state relative
to its MaxEnt equilibrium projection [22]. In this sense, R plays the role of an information
distance from the IFP manifold.

To analyze this nonequilibrium structure, we introduce the corresponding informational
grand potentials,

ΦIFP = −T ln Z, Φ = Up − TS − µNp, (7)

which follow the usual Legendre form of generalized Boltzmann ensembles. These quanti-
ties are not physical energies or work; rather, they are formal thermodynamic potentials
arising from the MaxEnt representation of the concept distribution.

Using Equations (3), (6) and (7), the difference between equilibrium and non-
equilibrium informational grand potentials at fixed (T, µ) or, equivalently, (U, N) satisfies
the following:

Φ − ΦIFP = T R ≥ 0. (8)

This is the exact information-theoretic analogue of the nonequilibrium free-energy
identity in stochastic thermodynamics [4]: the excess informational grand potential equals
the residual entropy multiplied by the intensive parameter T. The identity in Equation (8)
has the same mathematical structure as the Landauer-type relation: reductions in uncer-
tainty (here represented as R) require a corresponding decrease in a potential-like quantity.
In physical systems, this manifests as heat dissipation; in our formal, informational setting
it quantifies the minimal “informational work” needed to maintain structure beyond the
MaxEnt equilibrium. Thus, the relation provides a Landauer-type interpretation without
assuming any physical energy flows.

Across a finite interval, ∆t, between initial (i) and final ( f ) states, the change

∆R = ∆SIFP − ∆S = R f − Ri (9)

captures how the concept’s nonequilibrium organization evolves. This form is directly
analogous to the generalized second-law expressions of Esposito and Van den Broeck, which
separate changes in entropy into equilibrium and nonequilibrium components in Landauer-
like identities. As the mesostate distribution p(k, t) is updated through new documents,
∆R typically decreases, but S and SIFP may vary non-monotonically during semantic
innovation or attention shifts. Temporary increases in R reflect transient reorganization,
rather than a violation of the long-term relaxation trend.

At a fixed T, the corresponding change in excess potential satisfies

∆(Φ − ΦIFP)T ≈ T ∆R, (10)
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so that decreases in R correspond to decreases in the excess informational grand potential,
consistent with relaxation toward the IFP manifold whenever the empirical state moves
closer to its MaxEnt reference.

2.4. Dissipation Towards a Stationary Reference State

As a baseline, we first consider the regime in which the instantaneous fixed point π

is stationary and the thermodynamic control parameters (T, µ) remain constant. Under
these conditions, the empirical distribution relaxes towards its IFP, p → π, in the absence
of external driving.

For such isothermal, fixed-µ transitions, the integrated second law can be written in
the Esposito–Van den Broeck form [4]:

Wirr = T ∆Si + T ∆R, (11)

where ∆Si ≥ 0 is the irreversible entropy production [4,15]. This identity follows
from the standard stochastic thermodynamic decomposition of entropy production and
work for open systems [4,15]; a detailed derivation adapted to our notation is provided
in Appendix B.

When π is stationary, local detailed balance implies (see Appendix C)

dSi
dt

= − dR
dt

,

which integrates over a relaxation interval to

∆Si = −∆R, ⇒ Wirr = 0. (12)

This result characterizes the simplest form of conceptual dynamics: In the absence of
external driving, any departure of p from its fixed point is dissipated entirely as entropy
production, and the residual entropy R(t) monotonically decreases. In this regime, R(t)
behaves as a Lyapunov function, governing the convergence of the empirical distribution
to the IFP manifold [15,18,41,42].

In physical systems, this regime corresponds to standard isothermal relaxation pro-
cesses: with fixed intensive parameters (T, µ), probability mass is redistributed across
microstates until the stationary distribution is reached, while the irreversible work Wirr

vanishes over the full relaxation process. In our informational setting, an analogous be-
havior is observed for concepts whose empirical distributions remain close to a fixed IFP
and whose inferred intensive parameters (T, µ) vary only weakly over time. Such concepts
operate in a regime of thermodynamic buffering, where incoming documents primarily
refine the sampling of an essentially stationary reference distribution, rather than driving
the system away from it.

As we show below, this buffering behavior can be understood in terms of the geometry
of the MaxEnt manifold. Concepts whose fitted parameters (β, λ) place them near the
heavy–tailed region of the parameter space (β ≈ 3/2, λ ≈ 0) exhibit markedly increased
thermodynamic response coefficients. In this region, the curvature of the MaxEnt surface
becomes large, making the macroscopic quantities (U, N) highly sensitive to small pertur-
bations of (T, µ). Empirical concepts rarely reach the singular power–law limit λ → 0, but
many lie close enough to it to display a characteristic “critical-like” enhancement of heat
capacity and susceptibility. Paradoxically, this heightened responsiveness enables certain
concepts to keep their intensive parameters nearly constant: fluctuations in (U, N) are
absorbed without substantial movement in (T, µ), producing the observed thermodynamic
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buffering. In this sense, the equilibrated portion of the vocabulary acts as an effective
informational reservoir.

Within this framework, the cutoff λ sets the effective extent of accessible frequency
states, while β controls their scaling and thereby governs the proximity to the heavy–tailed
regime. To quantify the resulting degrees of responsiveness, we consider the standard
thermodynamic response coefficients associated with the MaxEnt model.

The heat capacities

Cµ =

(
∂U
∂T

)
µ

, αU =

(
∂U
∂µ

)
T

, (13)

describe how the informational energy U responds to variations in the intensive parameters,
while the susceptibilities

χT =

(
∂N
∂µ

)
T

, αµ =
1
N

(
∂N
∂T

)
µ

, (14)

characterize the corresponding response of the mean concept usage N.
Because all of these coefficients are derived from the same grand-potential function,

they share the same qualitative structure and exhibit parallel signatures near the heavy–tailed
region of the MaxEnt manifold. For empirical analysis, it is, therefore, sufficient to work with
a reduced pair of combined differential coefficients that capture the joint variations of both U
and N. To this end, we define the effective energy E = U − µN, whose differential

dE =

(
∂E
∂T

)
µ

dT +

(
∂E
∂µ

)
T

dµ = CE
µ dT + αE dµ, (15)

provides a compact summary of responsiveness through the coefficients (CE
µ , αE). These

quantities behave analogously to the full set of heat capacities and susceptibilities but offer
a clearer geometric interpretation on the (T, µ) manifold.

Large values of (CE
µ , αE) identify concepts with enhanced responsiveness—characteristic

of systems approaching the heavy–tailed boundary—where extensive quantities exhibit sub-
stantial fluctuations while intensive parameters vary only weakly. In contrast, dynamically
driven concepts typically appear before reaching these critical regions: their IFP trajectories
(T(t), µ(t)) begin to deviate from the stationary manifold while the response coefficients are
still rising but have not yet diverged. This pre-critical regime reflects the onset of semantic re-
organization, where changes in topic context or conceptual usage start to generate irreversible
work, Wirr > 0, before full buffering behavior is lost. The next subsection examines this driven
regime in detail and quantifies how much of the resulting dissipation supports structural
adaptation versus the maintenance of the existing conceptual organization.

2.5. Dynamic Efficiency and Non-Equilibrium Work Decomposition (Driving Case)

To analyze concept evolution under external informational driving, we now make
explicit the discrete-time structure that was implicit in the preceding discussion. We
represent the corpus as a sequence of snapshots, t0 < t1 < · · · < t f , with each corre-
sponding to an observational window (e.g., one year). At every snapshot, ti, we compute
the empirical mesostate pti (k) and its instantaneous fixed point (IFP), πti (k), obtained
from the MaxEnt construction described above. Each step, ti → ti+1, therefore consti-
tutes a transition between coarse-grained nonequilibrium steady states (NESSs) in the
sense of Hatano–Sasa [30] and the Esposito–Van den Broeck framework for Markovian
thermodynamics [4,15]. The resulting trajectory, {pt, πt}, captures how the internal energy,
U(t), and particle number, N(t), reorganize in response to external informational inputs.
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In the Esposito–Van den Broeck framework, the total irreversible entropy production
generated via a finite driven evolution admits the decomposition

∆Stot = ∆Sna + ∆Sa ≥ 0. (16)

The non-adiabatic component ∆Sna quantifies entropy generated via changes in the
IFP parameters (structural or contextual adaptation), while the adiabatic component ∆Sa

corresponds to the steady “house-keeping” dissipation required to maintain the nonequi-
librium structure when the parameters are held fixed. In the absence of driving (stationary
πt), this reduces to the intrinsic entropy production discussed earlier.

For discrete-time dynamics, the non-adiabatic contribution can be written in terms of
changes in residual entropy change, together with an excess term associated with parameter
driving. Following the Esposito–Van den Broeck Markov formulation (see Appendix D for
derivation), we obtain

∆Sna = −∆R + ∑
t

Ŷt→t+1, ∆Sa = ∆Stot − ∆Sna, (17)

where −∆R ≥ 0 is the boundary term produced via changes in the KL divergence
DKL(pt∥πt), and

Ŷt→t+1 = ∑
k

pt(k) ln
πt(k)

πt+1(k)
(18)

is the ensemble-averaged excess contribution generated purely via changes in the IFP
parameters (T(t), µ(t)). This term is the discrete counterpart of the Hatano–Sasa excess
functional for driven steady states.

Using (16) and (17) yields the driving/housekeeping split [30]:

Wdriving = Tref ∆Sna, Whk = Tref ∆Sa, Wirr = Wex + Whk. (19)

Thus, Wex quantifies the energetic cost of structural adaptation to changing seman-
tic conditions, while Whk represents steady-state dissipation required to maintain the
nonequilibrium distribution.

The reference temperature Tref specifies the statistical environment (bath) for evaluat-
ing work quantities. We use either (i) a global reference T⋆ obtained from the ontology-wide
mode, or (ii) a topic-specific temperature Tcore estimated from equilibrated core concepts.
Because efficiencies depend only on entropy-production ratios, all reported efficiency
measures are dimensionless and independent of the choice of Tref.

To evaluate how dissipation partitions between maintenance and adaptation, we
introduce the dimensionless efficiencies

ηhk =
∆Sa

∆Stot
, ηex =

∆Sna

∆Stot
= 1 − ηhk. (20)

In addition, we define the residual–information ratio

ρR =
[−∆R]+

∆Stot
, (21)

which quantifies the fraction of total entropy production that is effectively used to reduce
the residual informational structure. This measure is analogous in spirit to the informa-
tion–erasure efficiencies introduced by Allahverdyan et al. [43].

High values of ηhk indicate stabilized concepts whose evolution is dominated by
steady maintenance, while high ηex identifies adaptive concepts whose informational
structure is being reorganized over the interval ∆t.
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These two regimes manifest equally clearly in the behavior of the residual–information
ratio ρR. In the absence of external driving, relaxation proceeds entirely through the
elimination of residual entropy, so ρR attains its maximal value (Equation (12)). Under
driving, however, part of the dissipation is diverted toward accommodating changes in the
evolving IFP, leading to reduced values of ρR. Thus, ρR ≈ 1 signals simple relaxation toward
an equilibrium, whereas smaller values reveal periods of genuine adaptive reorganization
in response to shifts in the semantic environment.

3. Results
For each of the 13,945 concepts in the ontology, we estimated the MaxEnt parame-

ters (β, λ) of the macrostate (IFP) distribution (Equation (2)) using maximum-likelihood
estimation. To ensure internal consistency, each fitted pair was required to reproduce the
empirical moment constraints ⟨k⟩ and ⟨ln k⟩ (Equation (3)) within a numerical tolerance of
10−5. Concepts with a small number of mentions provided insufficient information for sta-
ble parameter inference and were excluded; over 2000–2018, this affected 2208 early-stage
concepts, leaving 11,737 analyzable cases.

Figure 1 shows the empirical distribution of fitted (β, λ) values across all concepts for
the period of 2000–2018. Most estimates lie within the region β ∈ [1, 2] and λ ∈ [0, 0.15],
with a persistent mode near β ≃ 1.5. Time-averaged values of β remain remarkably stable
(β ≈ 1.51 through 2010 and β ≈ 1.61 in 2018), consistent with the heavy-tailed usage
patterns typical of scientific terminology [22].

Figure 1. Empirical distribution of fitted MaxEnt parameters (β, λ) for 11,737 scientific concepts
across 2000–2018. Panels show the corpus-wide distribution of β over selected time periods and
highlight the persistent concentration of values near β ≃ 1.5.

To characterize broad equilibration patterns, we examined how the fitted parameters
relate to the following: (i) the time at which a concept first appears and (ii) the number of
documents supporting it. Three robust empirical regularities emerge.

First, concepts introduced earlier in the corpus more frequently exhibit small residual
entropy R, indicating close agreement between empirical usage distributions and the
MaxEnt prediction. Recently introduced concepts also reach this regime once sufficient
document support accumulates.

Second, the number of supporting documents Nc is a strong predictor of equilibration.
Across all years, most concepts with Nc ≳ 103 satisfy R ≈ 0, and the empirical entropy S
nearly coincides with the macrostate entropy SIFP. As support increases, the fitted parameter
λ typically decreases, yielding heavier-tailed usage consistent with the λ → 0 limit.
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Third, equilibrated high-support concepts tend to exhibit higher mesoscopic entropy
S and internal energy U, while their grand potential Φ is lower. This reflects a reduction in
the residual information potential TR as concepts stabilize. Newly introduced or sparsely
used concepts remain underdetermined in short windows but become analyzable as more
evidence accumulates; for example, the Anomalous Hall effect required approximately four
years of accumulation (2000–2004) before the empirical moments could be reliably matched.

Taken together, these findings reveal a coherent empirical structure underlying concept
evolution. Most concepts converge toward a narrow region of parameter space centered
near β ≃ 1.5; the exponential cutoff parameter λ decreases systematically with increasing
support; and the residual entropy R falls sharply once a concept exceeds roughly 103

supporting documents. A subset of long-established, high-support concepts forms a
stable background whose distributions already satisfy the MaxEnt constraints, providing a
statistically coherent reference against which more adaptive concepts evolve.

3.1. Energy–Entropy Diagram

To examine the global organization of concept states, we embed each concept in the
energy–entropy (E–S) plane using the effective energy E = ⟨ln k − µk⟩ and the empirical
mesostate entropy S. Figure 2 (left) shows the resulting diagram. All concepts lie below the
theoretical maximum for the macrostate entropy SIFP(E), represented by the solid blue line
and computed from Equation (4) in the near–power-law limit λ = 10−3 as a function of
effective energy E. The dashed blue curves show the corresponding theoretical envelopes
SIFP(E) for larger cutoff values λ > 10−3 (in increments of 0.01), illustrating how finite-size
effects progressively suppress the maximum attainable entropy at a fixed E.
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Figure 2. (left) Energy–entropy diagram for 11,737 concepts (2018). The green points denote stationary
(equilibrated) concepts. The blue (R < 0.04) and orange (R < 0.004) points identify concepts with
low residual entropy, while the red points highlight concepts with a near power-law term-frequency
spectrum (λ < 0.04). The black points represent all remaining concepts. The dashed blue and gray
curves are theoretical MaxEnt envelopes, SIFP(E; λ, β), for fixed cutoff values, λ > 0 and fixed β > 0,
respectively. The dashed gray curves show isotherms for β ∈ {0.5, 1, 2}, with the solid gray curve
marking β = 1.5. The solid blue curve represents the heavy-tailed limit λ → 0, here evaluated at
λ = 10−3. (right) The trajectories of three representative concepts—Diquark, Mass, and the Anomalous
Hall Effect. The orange lines show the empirical mesostate evolution, while the red lines show the
corresponding IFP trajectory.

Figure 2 (right) illustrates representative trajectories of concept state evolution. Diquark
and Mass both follow nearly stationary paths for more than a decade, maintaining almost
constant effective energy E and macrostate entropy SIFP. The Diquark trajectory shows a
gradual decrease in both empirical mesostate entropy S and residual entropy R, accompanied
by small oscillations in the inferred temperature. In contrast, Mass, probably the most basic
concepts in this dataset, remains extremely close to its IFP at all times (∆R ≃ 0), exhibiting
only a modest increase in S and SIFP while keeping E essentially unchanged.
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The Anomalous Hall effect concept illustrates a typical emergence trajectory. Initially,
both T and µ fluctuate strongly, indicating a driving regime in which the concept adapts
to a rapidly changing topical environment. As the concept stabilizes, these fluctuations
diminish, and the trajectory approaches the β ≃ 1.5 isotherm, entering a non-driving
regime in which the evolution becomes effectively autonomous. This region coincides
with maximal heat capacity and susceptibility (Figure 3), reflecting a buffered state where
intensive variables remain stable despite continued information exchange.
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Figure 3. Heat capacity, CE
µ , and susceptibility, αE, diagrams from Equation (15). The cyan curve

traces the trajectory of the Anomalous Hall Effect concept; the trajectory terminates at the year 2018,
when its estimated temperature reaches T ≃ 0.6 and µ ≃ −0.05. The color of the points denotes
concept classes, as in Figure 2.

Figure 3 displays the effective response functions CE
µ and αE, which are repre-

sentative of the broader family of thermal and chemical susceptibilities introduced in
Equations (13) and (14). To relate these responses to the global entropic structure of the
system, we introduce a dimensionless intensive entropy–energy ratio that empirically
remains almost constant for equilibrated concepts. This ratio was previously discussed as
an entropy reduction ratio by Peng et al. [28]:

TQeff =
TSIFP

E
=

E − ΦIFP

E
, (22)

which quantifies how much equilibrium entropy a concept produces per-unit effective
energy, E, times the local temperature, T. The second equality follows directly from
Equations (5) and (7), using the thermodynamic identity ΦIFP = E − TSIFP.

Empirically, all equilibrated concepts cluster around a characteristic value, TQeff≃1.5
(green points in Figure 4). Their trajectories in the ((TR)−1, TQeff) plane remain close to
this level and typically follow nearly horizontal iso–TQeff curves. Such behavior reflects
monotonic relaxation toward the IFP manifold at a constant temperature, T: the residual
entropy decreases (∆R < 0), together with the non-equilibrium free-energy difference
∆(Φ − ΦIFP) (Equation (10)), and the irreversible entropy production remains positive. In
such a stationary-reference regime, the relation ∆Si = −∆R holds, so these contributions
cancel, and the net irreversible work satisfies Wirr = 0 over the full relaxation interval.

By contrast, driven concepts exhibit deviations of various amplitudes away from
the TQeff ≃ 1.5 band, during which both R and Qeff can temporarily deviate from their
relaxation trend. These episodes signal adaptive reorganization of the usage distribution
and are accompanied by Hatano–Sasa excess entropy production, indicating genuine
non-equilibrium driving.

For concepts whose IFP distributions approach the power–law limit (red points in
Figure 4), the quantity TQeff approaches a well–defined empirical plateau. Across the corpus,
this plateau lies near TQeff

crit ≈ 1.5, and it is associated with concepts whose thermodynamic
parameters lie close to the empirical critical region around β ≃ βc = 1.5 (cf. Figure 3). To
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highlight this connection, Figure 4 (right) presents the state diagram in (CE
µ , TQeff) coordinates,

where the high-TQeff plateau aligns with the region of maximal response coefficients.
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Figure 4. (left) The values of the TQeff as a function of the (inverse) residual free energy (TR)−1

(Equation (8)). Trajectories for the equilibrium concepts of the Proton and the Angular momentum
are shown in green; the trajectory for the driven concept European muon collaboration is shown in a
gray color. (right) The intensive entropy–energy ratio TQeff as a function of the heat capacity CE

µ

(Equation (15)). The scatter plot for the period of 2002–2018 with the color scheme as that in Figure 2.

Most equilibrated concepts (green points) align with this plateau. This deviation
reflects finite–size effects associated with strictly positive cutoff values λ, which limit the
accessible frequency range and keep equilibrated concepts away from the heavy–tailed
regime where the plateau is attained.

A useful way to interpret the observed plateau in the entropy–energy ratio TQeff is
by analogy with classical scaling relations in statistical physics, where entropy and energy
often exhibit approximately linear dependencies over characteristic regions of the state
space. For example, in bounded thermodynamic systems and in hadronic matter near the
Hagedorn transition, the entropy grows proportionally to energy up to a characteristic
scale determined by the underlying distribution of microstates [44,45]. In our informational
setting, the empirical concentration of equilibrated concepts around a nearly constant
value of TQeff reflects an analogous finite-size scaling behavior: the informational “ca-
pacity” of concepts stabilizes, with equilibrated concepts generating equilibrium entropy
in a near-constant proportion to their effective energy. Departures from this level marks
adaptive reorganization and non-equilibrium driving, during which both R and TQeff may
temporarily increase or decrease.

3.2. Dissipative Regimes and Efficiency of Informational Maintenance

The entropy–production decomposition introduced in Section 2.5 allows us to quantify
how irreversible dissipation is partitioned between two components: (i) the housekeeping
contribution Whk, associated with sustaining the current nonequilibrium structure and
(ii) the excess contribution Wdriving, arising from changes in the instantaneous fixed-point
(IFP) parameters (T, µ) during externally driven evolution. The corresponding dimen-
sionless ratios from Equation (20) characterize the relative weight of these two types of
dissipation, while the residual–information ratio ρR (Equation (21)) measures the extent to
which entropy production offsets changes in the residual entropy, R.

Figure 5 (left) displays the empirical distribution of ηhk for the 2017–2018 interval. A
large fraction of concepts cluster near ηhk≃1, indicating that most irreversible dissipation
in this period is classified as housekeeping, rather than excess. Equilibrated concepts (green
points) concentrate mostly near ηhk = 1. Concepts with nearly power-law usage spectra
(λ < 0.005) also predominantly lie in this region. The residual entropy value alone does
not correlate strongly with ηhk, reflecting that ηhk depends on the relative magnitudes of
adiabatic and non-adiabatic entropy production, rather than on the instantaneous distance
from equilibrium.
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Figure 5. (left) The product TQeff plotted against the housekeeping efficiency ηhk for the 2017–2018
interval. (right) The intensive energy–entropy ratio TQeff versus the residual–information ratio ρR.
Color denotes the concept class, as in previous figures.

The residual–information ratio ρR exhibits a characteristic clustering around two
values, approximately 0 and 1 (Figure 5 (right)). When ρR ≈ 0, the residual entropy
remains essentially unchanged (∆R ≈ 0), so no dissipation is required to compensate for
changes in informational structure; all entropy production contributes to ∆Stot. In contrast,
the ridge at ρR = 1 corresponds to the case ∆Stot = |∆R|, characteristic of non-driven
relaxation where entropy production precisely offsets the decrease in residual entropy.

In the 2017–2018 window, most concepts lie on the ρR ≈ 1 ridge (65.4%), with
the remainder at ρR ≈ 0. Equilibrated concepts appear on both ridges: some exhibit
∆R ≈ 0 and thus fall at ρR ≈ 0, while others undergo slow, undriven relaxation and satisfy
∆Stot = |∆R|, placing them at ρR = 1. Concepts with large accessible frequency ranges
(high kmax, i.e., small λ) are also largely confined to the two ridges. More adaptively evolv-
ing concepts show limited dispersion around ρR ≃ 1, indicating intermittent deviations
from non-driven relaxation dynamics.

Overall, the empirical patterns indicate that concept evolution can be grouped into
three broad operational regimes based on dissipation characteristics: (i) a maintenance-
dominated regime (ηhk ≈ 1, ρR ≈ 0), where concepts exhibit minimal changes in residual
structure; (ii) a balanced relaxation regime (ρR = 1), in which the entropy production and the
residual entropy change are of a comparable magnitude; and (iii) an adaptive regime (ηhk < 1,
ρR ̸= 1), characterized by significant excess dissipation and pronounced variation in the
IFP parameters. This classification offers a concise, data-driven picture of how concepts
allocate irreversible dissipation across different phases of their evolution.

4. Discussion
The frequency distributions of scientific concepts exhibit the heavy-tailed behavior

characteristic of many symbolic and social systems. Following Baek et al. [21], Visser [27],
and Martini et al. [22], we model these distributions using a maximum entropy (MaxEnt)
framework constrained by the empirical moments ⟨k⟩ and ⟨ln k⟩. The logarithmic moment
reflects the information cost of locating a concept within a frequency class, and under these
constraints, the MaxEnt solution takes the geometric–power-law form

p(k) ∝ k−βe−λk,

which can be written as a generalized Boltzmann distribution with an effective internal
energy of U(k) = ln k and chemical potential µ. This provides a principled equilibrium
reference state for each concept, grounded directly in the observed frequency data.

The empirical frequency distribution defines a concept’s nonequilibrium mesoscopic
state, while the corresponding MaxEnt solution represents its equilibrium projection. Their
divergence, quantified by the residual entropy (Equation (6)), captures informational
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structure not explained by the MaxEnt constraints. Residual entropy, therefore, reflects
heterogeneity, historical imprint, and stabilization patterns in concept usage. A monotonic
decrease in R signals relaxation toward the equilibrium reference, whereas increases or
fluctuations indicate externally driven, reorganizing dynamics.

Thermodynamic-like quantities derived from MaxEnt formalism—generalized free en-
ergy, susceptibility, and heat capacity—provide interpretable summaries of these nonequilib-
rium states without attributing physical meaning to them. In particular, the identity

Φ − ΦIFP = TR

links the residual entropy to a free-energy-like measure of the informational structure,
consistent with relations appearing in nonequilibrium thermodynamics [4].

An analysis of state diagrams and temporal trajectories reveals two characteristic
regimes:

• Driven regime. Concepts undergo substantial variations in (β, λ), corresponding to
changes in both the localization structure and the accessible frequency range. These
parameter shifts generate non-adiabatic entropy production, captured by the Hatano–
Sasa and Esposito–Van den Broeck decomposition. Such episodic, externally induced
changes resemble jump-like updates in stochastic thermodynamics [18]. Concepts
in this regime exhibit large residual entropy, R, and often correspond to emerging,
debated, or rapidly evolving topics [22].

• Buffered (non-driven) regime. Concepts fluctuate around their equilibrium reference
with monotonically decreasing residual entropy. Dissipation is dominated by the
housekeeping component, and the system approaches or remains near its fixed-point
distribution. Well-established, stable concepts populate this regime.

Empirically, most concepts transition from the driven to the buffered regime near
an inverse-temperature value, β ≈ 1.5, where heat capacity and susceptibility reach pro-
nounced peaks. Around this point, the intensive entropy–energy ratio TS/E attains a
value close to 1.5, consistent across years and across concepts. Concepts that approach this
plateau typically enter a slow, buffered evolution, indicating that their frequency distribu-
tions have stabilized. Notably, while the intensive ratio remains approximately constant in
the buffered regime, the residual free-energy gap Φ − ΦIFP continues to decrease over time.

To quantify how concepts evolve across these regimes, we apply a discrete-time
Hatano–Sasa/Esposito–Van den Broeck decomposition, separating entropy produc-
tion into housekeeping and driving components. The resulting efficiency measures
(Equations (20) and (21)) characterize how effectively a concept maintains or reorga-
nizes its informational structure relative to total entropy production.

Most concepts operate with high housekeeping efficiency, indicating weakly driven
or stabilized dynamics. Only a minority—typically those undergoing rapid semantic or
topical change—exhibit substantial non-adiabatic entropy production and corresponding
reductions in housekeeping efficiency. These patterns suggest that emerging or transforma-
tive concepts reside temporarily in far-from-equilibrium states before stabilizing into the
buffered regime.

The framework developed here provides a unified, data-driven thermodynamic per-
spective on concept evolution. Pairing empirical nonequilibrium distributions with MaxEnt
equilibrium references enables us to distinguish systematic structure from noise, identify sta-
bilization and reorganization patterns, and quantify dissipation and efficiency in conceptual
dynamics. Although the analogy is formal and carries no physical interpretation, the resulting
thermodynamic quantities offer a coherent language for describing how scientific concepts
emerge, evolve, and stabilize within the finite informational capacity of a research field.
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Overall, our findings suggest that conceptual change follows measurable thermodynamic-
like trajectories: from exploratory, driven evolution to buffered stability marked by en-
tropy–energy plateaus and reduced dissipation. This perspective may support science-of-
science research by identifying concepts with high transformative potential, characterizing
semantic stabilization, and illuminating the collective dynamics of knowledge production.
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Nomenclature

t f Term frequency: number of times k ∈ Z+ a concept appears in a document.
Nc(t) Number of documents containing concept c up to time t.
Nc(k, t) Number of documents containing c exactly k times up to time t.
p(k, t) Observed probability that concept c is cited k times up to t.
pc({k}, t) ≡ pt Mesostate probability mass function at time t.
πeq(k, t; β, λ) Reference probability mass function at time t (thermal bath).

π(k, t) ≡ πt Macrostate PMF or instantaneous fixed point (IFP) of the mesostate pc.
β Lagrange multiplier; inverse temperature (β = 1/(kBT)).
λ Lagrange multiplier related to the chemical potential.
µ Chemical potential (µ = −λ/β).
kB Boltzmann constant (set kB = 1 in numerical computations).
Z Grand partition function that normalizes the macrostate PMF.
U = ⟨ln k⟩ Internal (information) energy of a concept per document.
N = ⟨k⟩ Average number of logical particles (concept mentions).
E = U − µ N The generalized energy function.
S Mesostate entropy per document derived from p(k, t).
Smacro ≡ §IFP Macrostate (thermodynamic) entropy per document.
Qeff = S/E Entropy efficiency.
R Residual entropy, R = SIFP − S.
Φ Grand canonical potential, Φ = U − TS − µN.
∆R Change in residual entropy over a finite interval ∆t.
TR Residual free energy (Φ − ΦIFP).
Cµ Heat capacity at constant chemical potential, Cµ = (∂U/∂T)µ.
CN Heat capacity at constant document support, CN = (∂U/∂T)N .
χT Particle-number susceptibility, χT = (∂N/∂µ)T .
αµ Thermal expansion coefficient, αµ = (1/N)(∂N/∂T)µ.
αE Energy–chemical potential coupling coefficient, αE = (∂⟨E⟩/∂µ)T .
CE

µ Heat capacity at constant chemical potential for effective energy E.
ηhk Housekeeping efficiency, ηhk = ∆Sa/∆Stot.
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ηex Driving (adaptive) efficiency, ηex = ∆Sna/∆Stot = 1 − ηhk.
ρR Residual-information retention ratio, ρR = 1 − [−∆R]+/∆Stot.

Appendix A. Derivation of the TR Identity for the MaxEnt Reference State
We consider MaxEnt distributions of the exponential-family form at time t:

πt(k) =
1
Zt

exp
[
−βtEt(k)

]
=

1
Zt

k−βt e−λtk, λt = βtµt, (A1)

where the exponent involves the constraint function

E(k) = ln k − µk.

Let pt(k) denote the empirical (nonequilibrium) distribution at time t. We define the
associated informational potential,

Φ[p; T, µ] = ⟨E⟩p − T S[p] = ∑
k

pk(ln k − µk)− T
(
−∑

k
pk ln pk

)
, (A2)

and its MaxEnt (IFP) counterpart,

ΦIFP(T, µ) = Φ[π; T, µ] = − T ln Z. (A3)

For any p and its corresponding IFP π at the same (T, µ),

Φ[p; T, µ]− ΦIFP(T, µ) = T DKL(p∥π) = T R(p∥π) ≥ 0, (A4)

with equality only when p = π.

Proof. The Kullback–Leibler divergence is

R(p∥π) = ∑
k

pk ln
pk
πk

= ∑
k

pk ln pk − ∑
k

pk ln πk.

Since ln πk = −βE(k)− ln Z, we obtain

R(p∥π) = ∑
k

pk ln pk + β ∑
k

pkE(k) + ln Z.

Multiplying by T and using Tβ = 1 yields

TR = T ∑
k

pk ln pk + ∑
k

pkE(k) + T ln Z = Φ[p; T, µ]− ΦIFP(T, µ).

The identity (A4) requires only that (T, µ) be fixed; it does not assume fixed moments
such as ⟨k⟩ or ⟨ln k⟩. Differences in these moments are fully encoded in the KL divergence.

On a discrete time grid, {tn},

Φ(ptn)− ΦIFP(tn) = Ttn R(ptn∥πtn) ≥ 0. (A5)

Thus, the decomposition

Φ[p; T, µ] = ΦIFP(T, µ) + T R(p∥π) (A6)
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makes explicit the contribution of the residual information R as the nonequilibrium excess
over the MaxEnt reference.

Appendix B. Irreversible Work Identity for Informational Grand Potentials
The purpose of this appendix is to show that, for exponential family (MaxEnt) distri-

butions with constrained observables ⟨ln k⟩ and ⟨k⟩, the algebraic structure of the Legendre
transform leads to an identity formally equivalent to the nonequilibrium free–energy
relations derived by Esposito and Van den Broeck [4].

We define the informational grand potential

Φt ≡ Ut − TtSt − µtNt,

where Ut = ⟨ln k⟩pt , Nt = ⟨k⟩pt , and St is the Shannon entropy. Differentiating gives the
exact identity

dΦt = dUt − Tt dSt − St dTt − µt dNt − Nt dµt. (A7)

In classical nonequilibrium thermodynamics [47,48], entropy changes are decomposed as

dSt = dSe,t + dSi,t, dSi,t ≥ 0,

where dSe,t is the reversible contribution induced via the protocol, and dSi,t is
entropy production.

To ensure consistency with the Legendre structure of Φt, we define the reversible part
using the identity

Tt dSe,t ≡ dUt − µtdNt,

which reduces to the usual reversible relation when pt = πt. Thus,

Tt dSi,t ≡ dUt − µtdNt − Tt dSt. (A8)

Insert Equation (A8) into the differential of Φt (Equation (A7)), and simplify. Introduc-
ing the formal forcing term

δWform ≡ dUt − µtdNt,

one obtains the exact identity

Tt dSi,t = δWform − dΦt − St dTt − Nt dµt. (A9)

Equation (A9) is a formal rewriting of the Hatano–Sasa/Esposito decomposition
applied to the informational potential, rather than to a physical free energy.

Differentiating the identity Φt = ΦIFP,t + TtRt yields

dΦt = dΦIFP,t + Tt dRt + Rt dTt. (A10)

Substituting Equation (A10) into Equation (A9) gives

Tt dSi,t = δWform − dΦIFP,t − Tt dRt − Rt dTt − St dTt − Nt dµt.

Integrating from ti to t f gives the total irreversibility:

Wirr ≡
∫ t f

ti

δWform − Wrev =
∫ t f

ti

Tt dSi,t +
∫ t f

ti

Tt dRt, (A11)
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where Wrev denotes the reversible contribution obtained when the protocol is restricted to
the IFP manifold (Rt = 0, Si,t = 0).

For protocols that keep (T, µ) fixed, Equation (A11) reduces to

Wirr = T ∆Si + T ∆R. (A12)

Equation (A12) is the informational analog of the iso–(T, µ) irreversible work identity
in nonequilibrium thermodynamics [4]. Here, T ∆Si measures irreversible dispersion
generated via the protocol, and T ∆R measures the change in the nonequilibrium structure
relative to the MaxEnt baseline.

Appendix C. Entropy Production Under Instantaneous Fixed-Point
Reference

In this appendix, we demonstrate that, when the reference distribution is chosen as
the instantaneous fixed point of the system, the time derivative of the residual entropy
equals the negative of the entropy production rate:

Ṙ(t) = −Ṡi(t). (A13)

Let pi(t) denote the empirical (mesoscopic) probability of observing the microstate
i at time t, corresponding in the main text to the document–level frequency distribution
p(k, t) defined in Equation (1). The instantaneous fixed point or macrostate of the system is
the distribution that maximizes the Shannon entropy Smacro(t) = −∑i πi(t) ln πi(t) under
the current empirical constraints ⟨ f j⟩p(t) = ⟨ f j⟩π(t). This constrained maximization yields
an exponential–family form (cf. Equations (2) and (3) in the main text):

πi(t) =
1

Z(t)
exp

[
−∑

j
θj(t) f j(i)

]
, Z(t) = ∑

i
exp

[
−∑

j
θj(t) f j(i)

]
, (A14)

where the Lagrange multipliers θj(t) (identified in the main text as β(t) and λ(t)) are
determined at each instant by the empirical moments ⟨ f j⟩p(t).

The residual entropy—the informational distance between the empirical distribu-
tion and its instantaneous MaxEnt reference—is the Kullback–Leibler divergence (cf.
Equation (6) in the main text):

R(t) = DKL(p(t) ∥π(t)) = ∑
i

pi(t) ln
pi(t)
πi(t)

≥ 0. (A15)

The equality R = 0 occurs only when the mesoscopic state coincides with its
IFP, p(t) = π(t), that is, when the system is locally in equilibrium with respect to the
chosen constraints.

Taking the time derivative of Equation (A15) gives

Ṙ(t) = ∑
i

ṗi ln
pi
πi

+ ∑
i

pi
d
dt

[
ln

pi
πi

]
= ∑

i
ṗi ln

pi
πi

+ ∑
i

pi

(
ṗi
pi

− π̇i
πi

)
. (A16)

The first sum in the second term vanishes because the probabilities are normalized,
∑i ṗi = 0. Hence,

Ṙ(t) = ∑
i

ṗi ln
pi
πi

− ∑
i

pi
π̇i
πi

. (A17)
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From Equation (A14), we have ln πi = − ln Z − ∑j θj f j(i), so that

π̇i
πi

= −∂tln Z − ∑
j

θ̇j f j(i). (A18)

Taking the expectation value with respect to the empirical distribution pi:

∑
i

pi
π̇i
πi

= −∂tln Z − ∑
j

θ̇j ⟨ f j⟩p. (A19)

For an exponential-family distribution, the partition function satisfies ∂θ j ln Z =

−⟨ f j⟩π , so that ∂tln Z = ∑ j ∂θ j ln Z θ̇ j = − ∑ j θ̇ j ⟨ f j⟩π . Substituting this into
Equation (A19) gives

∑
i

pi
π̇i
πi

= −∑
j

θ̇j

(
⟨ f j⟩p − ⟨ f j⟩π

)
.

By definition of the instantaneous fixed point, these expectation values coincide
(⟨ f j⟩p = ⟨ f j⟩Π), and therefore,

∑
i

pi
π̇i
πi

= 0. (A20)

With Equation (A20), the residual-entropy rate (A17) reduces to

Ṙ(t) = ∑
i

ṗi(t) ln
pi(t)
πi(t)

. (A21)

For a continuous-time Markov process with transition rates Wij, the entropy produc-
tion rate is defined as [18]

Ṡi(t) =
1
2 ∑

i,j
Jij(t) ln

pi(t)Wij

pj(t)Wji
, Jij = piWij − pjWji. (A22)

If the transition rates satisfy detailed balance with respect to the instantaneous refer-
ence distribution πi(t),

πi(t)Wij(t) = πj(t)Wji(t),

then

Ṡi(t) =
1
2 ∑

i,j
(piWij − pjWji) ln

(
piWij

pjWji

)

=
1
2 ∑

i,j
(piWij − pjWji) ln

(
pi/πi
pj/πj

)
.

Define fi = pi/πi. Using the antisymmetry of Jij = piWij − pjWji and the symmetry
of the sum, we obtain the following:

Ṡi(t) = ∑
i,j

piWij ln

(
fi
f j

)
. (A23)

Now, consider the expression −∑i ṗi ln fi. Using the master equation ṗi = ∑j(pjWji − piWij):

−∑
i

ṗi ln fi = −∑
i,j

ln fi
(

pjWji − piWij
)

= ∑
i,j

piWij ln fi − ∑
i,j

pjWji ln fi.
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We relabel indices i ↔ j in the second sum:

−∑
i

ṗi ln fi = ∑
i,j

piWij(ln fi − ln f j) = ∑
i,j

piWij ln

(
fi
f j

)
.

We can see that this matches Equation (A23) for Ṡi(t). Therefore, the right-hand side of
Equation (A22) can be rewritten as

Ṡi(t) = −∑
i

ṗi(t) ln
pi(t)
πi(t)

.

Comparing with Equation (A21) immediately yields the desired identity

Ṙ(t) = − Ṡi(t). (A24)

Equation (A24) shows that, when the reference state is the instantaneous MaxEnt fixed
point π(t) (determined self-consistently from the data at each time), the residual entropy
R(t) decreases exactly at the rate at which the entropy is produced. In fact, the reference
state need not be the IFP of the empirical mesostate; Equation (A21) holds when π̇ = 0 and
its temperature and chemical potential remained constant (θ̇j = 0) for the reference state.
To see this, we need to compare Equations (A21) and (A32).

In both cases, the system relaxes monotonically toward π, and the relative entropy
R(t) plays the role of a Lyapunov function:

Ṙ(t) ≤ 0, Ṡi(t) ≥ 0.

The identification of R as a measure of “informational distance from equilibrium” jus-
tifies its interpretation as an internal measure of the system’s nonequilibrium organization,
and it explains why, under IFP dynamics, entropy production precisely quantifies the rate
of information dissipation.

Mid-point approximation for an entropy-production estimate. In the main text,
we distinguish two informational quantities: (i) the residual entropy R(t) = DKL(pt∥πt),
which measures the instantaneous separation between the empirical mesostate pt and its
MaxEnt reference (IFP) πt, and (ii) the entropy production ∆Si, which measures the total
irreversibility accumulated along the transition between two time points. These quantities
coincide only in the special case of relaxation toward a fixed reference distribution; in
general, R is a state function (defined at each t), while ∆Si is path-dependent because the
reference πt changes over time.

To formalize this distinction without invoking physical heat flows, we use the stan-
dard Hatano–Sasa/Esposito–Van den Broeck informational balance for a time-dependent
reference distribution πt:

∆Si = ∆S + ∆Sex, ∆S ≡ S[pt f ]− S[pti ], (A25)

where the excess contribution is defined as

∆Sex ≡ −
∫ t f

ti

dt ∑
k

p(k, t) ∂t ln π(k, t). (A26)

Equation (A25) is the informational analogue of the entropy production decomposition
used in stochastic thermodynamics: ∆Si captures irreversibility, while ∆Sex accounts for
the fact that the reference (IFP) itself moves in time under the external protocol.
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Our data are available only at discrete times ti and t f . We therefore approximate the
integral in Equation (A26) by a midpoint (Stratonovich) rule [49], i.e.,

∆Sex ≈ −∑
k

p∗(k)
[
ln π f (k)− ln πi(k)

]
, p∗(k) ≡ 1

2
[
pi(k) + p f (k)

]
, (A27)

where pi ≡ p(·, ti) and p f ≡ p(·, t f ), and likewise πi ≡ π(·, ti), π f ≡ π(·, t f ).
In our MaxEnt construction the IFP has the generalized Boltzmann form π(k, t) ∝

k−β(t)e−λ(t)k. To implement the midpoint rule consistently at the level of the protocol
parameters, we also introduce midpoint intensives

β∗ =
1
2
[
β(ti) + β(t f )

]
, µ∗ = −

λ(ti) + λ(t f )

β(ti) + β(t f )
, (A28)

which correspond to the midpoint of (β, µ) under the identity µ(t) = −λ(t)/β(t). (Equiva-
lently, one may work with (β, λ) directly; we use (β, µ) only to match the grand-canonical
notation adopted in the main text.)

Finally, combining Equations (A25) and (A27), we obtain the discrete-time estimate
used in the Results:

∆Si ≈
[
S[p f ]− S[pi]

]
− ∑

k
p∗(k)

[
ln π f (k)− ln πi(k)

]
. (A29)

This estimator makes explicit why ∆Si is not, in general, equal to ∆R or to the endpoint KL
divergences: it depends on the change of the reference along the interval, approximated here
by a midpoint rule.

Appendix D. Dynamic Efficiency and Work Decomposition in
Concept Evolution

We present a derivation of the discrete-time decomposition of entropy production into
non-adiabatic (excess) and adiabatic (housekeeping) parts, as given by Equations (18) and (17)
of the manuscript. This derivation follows the frameworks of Hatano and Sasa [30] and
Esposito–Van der Broeck [15].

In stochastic thermodynamics, the total entropy production rate Ṡtot(t) can be split
into two non-negative contributions:

Ṡtot = Ṡna + Ṡa. (A30)

Here, Ṡna is the non-adiabatic (excess) entropy production rate due to the change of
control parameters, and Ṡa is the adiabatic (housekeeping) entropy production rate required
to maintain the non-equilibrium steady state, even when the control parameters are fixed.

Following [15], the non-adiabatic part can be expressed as

Ṡna = − d
dt

D(pt∥πt) + Ṡex, (A31)

where the excess entropy production rate Ṡex is given by

Ṡex = −∑
k

pt(k) ∂t ln πt(k). (A32)

Integrating Equation (A31) from an initial time, ti, to a final time, t f , yields

∆Sna = −
[
D(pt f ∥πt f )− D(pti∥πti )

]
+
∫ t f

ti

Ṡex dt = −∆R + ∆Sex, (A33)
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with ∆R = Rt f − Rti (see Equation (6) from the main text) and ∆Sex =
∫ t f

ti
Ṡex dt.

To obtain a form suitable for the analysis of discrete-time data, we approximate the
integral of Ṡex using a sum over discrete time steps. Let the time interval be divided into
steps of size ∆t = 1 (without a loss in generality). For a step from t to t + 1, we approximate
the excess entropy production using the functional introduced by Hatano and Sasa [30],
which, in our notations, reads as ϕt(k) = − ln πt(k). For a discrete-time trajectory pt → pt+1,
we define the excess functional

Ŷt→t+1 = ∑
k

pt(k)
[
ϕt+1(k)− ϕt(k)

]
= ∑

k
pt(k) ln

πt(k)
πt+1(k)

, (A34)

which satisfies ⟨e−Ŷ⟩ = 1 and, therefore, ⟨Ŷ⟩ ≥ 0.
To see the connection, note that, in the continuous limit,

ln
πt(k)

πt+1(k)
≈ −∂t ln πt(k)∆t,

so that
Ŷt→t+1 ≈ ∆t Ṡex(t).

Summing over all steps from ti to t f − 1 gives

t f −1

∑
t=ti

Ŷt→t+1 ≈
∫ t f

ti

Ṡex dt = ∆Sex. (A35)

Substituting this discrete approximation into Equation (A33) yields

∆Sna ≈ −∆R +

t f −1

∑
t=ti

Ŷt→t+1 > 0. (A36)

The adiabatic (housekeeping) entropy production is then the remainder:

∆Sa = ∆Stot − ∆Sna ≥ 0. (A37)
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