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ABSTRACT 

This paper analyzes the impact of air transport connectivity and accessibility on scientific collaboration. 

Numerous studies demonstrated that the likelihood of collaboration declines with increase in distance 

between potential collaborators. These works commonly use simple measures of physical distance 

rather than actual flight capacity and frequency. Our study addresses this limitation by focusing on the 

relationship between flight availability and the number of scientific co-publications. Furthermore, we 

distinguish two components of flight availability: (1) direct and indirect air connections between 

airports; and (2) distance to the nearest airport from cities and towns where authors of scientific articles 

have their professional affiliations. We provide evidence using Zero-inflated Negative Binomial 

Regression that greater flight availability is associated with more frequent scientific collaboration. More 

flight connections (connectivity) and proximity of airport (accessibility) increase the number of 

coauthored scientific papers. Moreover, direct flights and flights with one transfer are more valuable 

for intensifying scientific cooperation than travels involving more connecting flights. Further, analysis 

of four organizational sub-datasets—Arizona State University, Indiana University Bloomington, 

Indiana University-Purdue University Indianapolis, and University of Michigan—shows that the 

relationship between airline transport availability and scientific collaboration is not uniform, but is 

associated with the research profile of an institution and the characteristics of the airport that serves this 

institution. 
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INTRODUCTION AND PRIOR WORK 

Despite the proclaimed “death of distance” (Cairncross, 1997; Friedman, 2005), geography is of 

constant importance for scientific collaboration (Morgan, 2004; Olson & Olson, 2000; Olechnicka et 

al., 2018). Numerous studies demonstrated that the likelihood of collaboration declines with growing 

distance between prospective collaborators. This effect is observed both at the micro level of buildings 

or campuses, as well as at the macro level of collaboration networks among cities, regions, and 

countries. 

At the micro level, Allen (1997) showed in the 1970s that the frequency of communication between 

individuals in science and engineering organizations drops exponentially with the growing distance 

between their offices. Subsequent research revealed that collaboration is more likely not only between 

closely sited or collocated individuals (Boudreau et al., 2017; Catalini, 2018) but also between those 

whose daily paths cross frequently or largely overlap (Kabo et al., 2014; Kabo et al., 2015). 

At the macro level—where distance is measured in kilometers rather than meters—a large body of 

evidence indicates the negative impact of spatial separation on research collaboration: the greater the 

distance, the lower the likelihood of collaboration. Furthermore, geographical distance not only 

decreases the likelihood of any collaboration, but also reduces the intensity of collaboration, as 

measured by the number of co-publications, co-patents, and collaborative projects (Adams, 2013; 

Fernández et al., 2016; Katz, 1994). The relationship between distance and collaboration is frequently 

analyzed in the framework of the general gravity model (Hua & Porell, 1979). The gravity model is 

conceptually based on Isaac Newton’s law of gravitation. It says that the gravitational force between 

two objects is proportional to their masses and inversely proportional to the square of the distance 

between them. The model assumes that not only the distance between collaborating units matters, but 

also their “masses” should be taken into account. Here “mass” refers to research capacity of the 

collaborating units, typically measured by research and development employment or expenditures, as 

well as by accumulated research outputs: stocks of funded projects, publications, and patents. The 

gravity model applied to scientific collaboration clearly shows that the probability and intensity of 

research collaboration are negatively related to the geographic distance which separates the units in 

question and are positively affected by their accumulated research potential (Andersson & Persson, 

1993; Hoekman et al., 2009; Hoekman et al., 2010; Hoekman et al., 2013; Picci, 2019; Plotnikova & 

Rake, 2014; Sebestyén & Varga, 2013). 

The detrimental effect of geographical distance on the likelihood of research collaboration remains 

significant even when controlling for important features of collaborating units, type of collaborative 

relations, and the context in which collaboration occurs. Previous studies controlled for scientific 

quality, most frequently measured via citations (Bianconi & Barabási, 2001; Ke, 2013; Mazloumian et 
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al., 2013),  differences in cooperation patterns accross various fields of science (Barber & Scherngell, 

2013; Franceschet & Costantini, 2010; Gingras, 2016; Larivière et al., 2006), type of research (Wagner, 

2008), and the type of collaboration data used in the analysis, such as co-publications, co-patents, and 

collaborative projects (Lata et al., 2015; Zitt et al., 2003). Prior work has also considered different types 

of non-spatial proximities, including cognitive, cultural, economic, institutional, organizational, social, 

and technological (Boschma, 2005; Capello & Caragliu, 2018; Knoben & Oerlemans, 2006; Nagpaul 

2003; Marek et al., 2017). 

The rise in research collaboration manifests itself not only in the growing number of co-authors per 

paper (and co-inventors per patent), but also in the increasing co-authorship among authors whose 

institutional affiliations were in different countries. Between 1990 and 2011, the percentage of 

internationally co-authored papers indexed in the Science Citation Index increased from 10.1% to 

24.6% (Wagner et al., 2015). Co-authorship is particularly intense between authors affiliated with the 

largest research centers, which serve as major hubs in the global scientific cooperation network 

(Matthiessen et al., 2010; Maisonobe et al., 2016). At the same time, researchers are increasingly 

collaborating across greater distances. Between 1980 and 2009 the mean collaboration distance per 

publication raised from 334 to 1,553 kilometers (Waltman et al., 2011). 

The distance between collaborating units in spatial scientometrics studies is usually measured as 

geographical distance along the surface of the earth (“as the crow flies”), between points which are 

defined by geographical coordinates: latitude and longitude (Frenken et al., 2009). The actual 

accessibility is taken into account surprisingly rarely in empirical studies of scientific collaboration. To 

our best knowledge, only following empirical works considered actual transport accessibility as a 

covariate of scientific collaboration. Andersson and Ejermo (2005) included road travel time in their 

case study of Swedish patent co-authorship network. Ejermo and Karlsson (2006) studied road and air 

travel time impact on co-patenting in Sweden. Ma, Fang, Pang, and Li (2014) hypothesized that high-

speed railway accessibility can be one of the factors explaining the intensity of scientific cooperation 

between Chinese cities. Later, the hypothesis was supported with evidence from instrumental variable 

regression study designed by Dong, Zheng, and Kahn (2018). Furthermore, Hoekman, Frenken, and 

Tijssen (2010) argued that European regions with a major international airport are more likely to 

develop intensive international scientific collaboration. Against this background, the study of Catalini, 

Fons-Rosen, and Gaulé (2016) stands out as the authors used a quasi-experimental design (natural 

experiment) to examine the impact of introducing a new, low fare, air route on the probability of 

scientific cooperation. Their analysis focuses on 890 faculty members in chemistry departments of 

research-intensive US universities in the period from 1991 to 2012. The results show that the 

introduction of new routes significantly increases the likelihood of collaboration among US chemistry 
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scholars. The greatest impact is observed in the case of early career scholars, who usually have fewer 

resources than established professors do, and therefore cheaper flights may be more important to them. 

Our study extends prior work by analyzing the relationship between scientific collaboration and 

worldwide air transport availability. We distinguish two components of flight availability: (1) direct 

and indirect air connections between airports (connectivity), and (2) distance to the nearest airport 

(accessibility) from cities and towns where scientific articles are affiliated. We test the hypothesis that 

better air transport connectivity and accessibility—ceteris paribus—is positively associated with 

scientific collaboration. Furthermore, we hypothesize that the relation depends on research capacity and 

profile of a given university and the flight network of an airport that serves the university. To account 

for such specific circumstances, we selected four campuses of US public research-intensive universities: 

Arizona State University at Tempe (ASU), Indiana University Bloomington (IUB), Indiana University-

Purdue University Indianapolis (IUPUI) and University of Michigan at Ann Arbor (UMICH). Only the 

main campuses of the universities are included in the study. Our selection criteria comprised comparable 

size and research intensity of universities, various levels of passenger traffic, and the possibility of an 

unambiguous assignment of a major research university to a single airport. ASU is served by Phoenix 

Sky Harbor International Airport (PHX) and UMICH by Detroit Metropolitan Airport (DTW). Both 

airports are important hubs. According to Federal Aviation Administration data, PHX was the 11th US 

airport in terms of number of passengers in 2016, while DTW took 18th position. IUB and IUPUI 

constitute a specific case. The two campuses are served by the same airport, Indianapolis International 

Airport (IND). IND is an airport with considerably less passenger traffic than PHX and DTW. In 2016, 

it was 46th US airport regarding the number of passengers. 

The remainder of the paper is organized as follows. The next section introduces our empirical strategy 

and presents variables and descriptive statistics. Then, we present our approach to model the relation 

between the number of co-authored papers and air transport availability. We then discuss findings. The 

paper concludes with discussion and conclusions. Supporting information includes detailed information 

on data sources and data processing procedures, as well as information needed to replicate the results 

of this study. 

EMPIRICAL STRATEGY AND DESCRIPTIVE STATISTICS 

The number of co-authored papers is the dependent variable in this study. Co-authorship were identified 

on the basis of the co-occurrence of author affiliations in articles published in years 2008-2013 and 

indexed in the Web of Science database. We employed the full counting method, i.e. each co-authored 

paper is counted as one for a given ego-alter relation, regardless of the number of authors, organizations, 

geo-locations or countries involved (Perianes-Rodriguez at al., 2016). The advantage of this approach—
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as compared to fractional counting—is the intuitive interpretation of results, as well as the possibility 

of using well-established statistical models for event counts data (Long, 1997). 

The dependent variable is measured for each of four institutions—ASU, IUB, IUPUI, and UMICH—

as the number of co-authored papers between the given campus and various geographical units across 

the globe (henceforth called as ‘destinations’). To ensure coherence and international comparability 

geo-locations are merged into 2,245 town/city/metropolitan/regional entities, such as European NUTS2 

regions and US Metropolitan Statistical Areas (see Fig 1). For each of four selected universities a 

separate egocentric co-authorship network was constructed. In consequence, we obtained four ego-

networks, in which an ego was ASU, IUB, IUPUI or UMICH, and alters (destinations) were spatial 

units from around the world  (for the details on data sources and data processing, please refer to the 

Supplementing information1). 

 

Fig 1. Merged cities and metro areas under this study 

* Colours represent countries. 

To measure air transport availability we employed a number of variables grouped into two categories: 

commercial air transport connectivity and transport accessibility to the nearest airport. The accessibility 

variable is measured as the geographical distance from the center (centroid) of a destination to its nearest 

airport with commercial flights. To account for connectivity, we tested three approaches. The most 

straightforward variable is a ‘Minimum number of stops to reach destination’. This factor variable is 

based on a minimum number of connecting flights needed to travel from ego’s nearest airport to the 

airport nearest to the centroid of destination geographical unit. It is measured up to 4 connecting flights 

(or 3 stops) and takes values: 0 (for direct flights), 1, 2, or 3. Second measure ‘LinesXstop’ takes into 

                                                            
1 Available on GitHub: https://github.com/everyxs/FlightCoauthor 

https://github.com/everyxs/FlightCoauthor
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account number of flights between ego and destination airports. ‘Lines0stop’ accounts for direct flights 

only. ‘Lines1stop’ measures direct and indirect flights up to one stop (i.e., up to two connecting flights). 

‘Lines2stop’ considers direct and indirect flights up to two stops, while ‘Lines3stop’ adds connections 

requiring 3 stops. To take into account the preference for flights with fewer transfers, weights are 

applied: 1 for direct flights, 0.5 for one stop connections, 0.33 for two stop, and 0.25 for three stops. 

‘SeatsXstop’ variable is constructed in a similar way, but it also takes into account number of seats 

available on direct and connecting flights. The use of concurrent connectivity variables aims to better 

understand the relationship between air transport and scientific collaboration. Three questions are 

particularly interesting in this case. First, are direct connections more important than connecting flights? 

Second, are indirect flights with fewer stops more important than those with more stops? Third, does 

the passenger capacity (number of available seats) matter? 

Two control variables are used in this study. ‘Geographical distance’ between an ego-institution and a 

destination is measured along the surface of the earth. We assume that geographical distance alone 

should explain a lot of scientific collaborations. However, we hypothesize that models accounting 

simultaneously for geographical distance and flights availability variables will fit the data better. The 

second control variable is the ‘Number of papers at destination’. This variable can be seen as the 

equivalent of a mass term in the gravity model approach. We assume that probability and intensity of 

collaboration between ego and destination depend primarily on the scientific capacity of a destination. 

Collaboration with city, region, or country that have virtually no research activities is improbable. While 

collaboration with global knowledge hubs, e.g. Oxford, Paris, or Tokyo, can be intensive, despite the 

geographical distance. 

Our full dataset of 8,980 observations (units of analysis) consists of four institutional sub-datasets, each 

comprising 2,245 observations (see Table 1 and 2). An observation is defined as a multidimensional 

link (co-authorships, geographical distance, air links, etc.) between university campus in question—one 

of the four ego-institutions—and one of 2,245 geographical entities around the world that have at least 

one paper affiliated as identified by Mazloumian et al. (2013). The number of co-authored papers 

between ego-institution and defined geographical entities—the dependent variable in this study—

ranges from 0 to 3433, with the mean value of the variable equal to 15.4 (in the period of 2008-2013). 

It means that the four analyzed institutions co-authored on average 15.4 papers per possible relationship 

between the institution and one of the defined geographical units. In this regard, UMICH stands out 

from the other three universities. Its average number of papers co-authored with researchers affiliated 

with institutions located in other spatial units around the world equals 34.6, while for other institutions 

it lays in the range from 8.2 to 9.9.  
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Table 1. Descriptive statistics – full dataset 

Variable Observations Mean Std. Dev. Min Max 

Number of co-authored papers 8980 15.4 89.5 0 3433 
Geographical distance (mi) 8980 4232.3 2669.4 20.4 11171 
Number of papers at destination 8980 5373.3 13866 1 201693 
Distance to airport at destination (mi) 8980 24.8 25.4 0.4 327 
lines0stop 8980 0.1 0.7 0 15 
lines1stop 8980 3.8 6 0 55 
lines2stop 8980 18 16.8 0 127 
lines3stop 8980 114.6 91.6 0 822 
seats0stop 8980 24.1 128.5 0 2016 
seats1stop 8980 623 1049.3 0 8523 
seats2stop 8980 3071.3 3002.3 0 21249 
seats3stop 8980 95361.2 153682.8 0 1535855 
Min. number of stops to destination 8980 1.5 0.7 0 4 
 

The geographical distance between the four ego-institutions and their collaborators varies from 20.4 to 

11,171 miles. Mean geographical distance between all possible dyads (between one of the four ego-

institutions and all other possible collaborators in their network) is 4,232 miles. To put this number in 

context, recall that the distance between New York City and Los Angeles is about 2,450 miles. The 

high average geographical distance results for the fact that many coauthors have institutional homes on 

other continents. UMICH has the lowest mean geographical distance between it and collaborating 

institutions (4,001 miles), followed by UIPUI and IUB (4,080 and 4,085 miles respectively), while ASU 

is characterized by the highest geographical separation from its collaborators (4,232 miles). The 

juxtaposition of the number of co-authored papers and the distance between co-authors’ affiliations 

reveals that collaboration is not uniformly distributed across geographic space (see Fig 2). A pattern is 

evident across all four institutions: A university substantial proportion of collaborations take place in 

the range up to 2,000 miles, there are almost no collaborations in the 2,000 to 4,000 mile range, then, 

from over 4,000 miles (over 5,000 miles in the case of ASU) collaborations are again evident. 

Comparing these distances to a map shows that the closest set of collaborations reflects those in which 

the collaborator is within the continental U.S. or North America, the gap at 2,000 to 4,000 miles reflects 

the Atlantic and Pacific Oceans, and the range from 4,000 to 6,000 miles reflects mainly U.S.—

European collaborations.  
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Table 2. Descriptive statistics – institutional sub-datasets 

Variable Observations Mean Std. Dev. Min Max 

ASU 
Number of co-authored papers 2245 9.9 40.8 0 793 
Geographical distance (mi) 2245 4762.6 2619.2 82.9 10934 
Number of papers at destination 2245 5375.3 13875.2 1 201693 
Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327 
Lines0stop 2245 0.3 1 0 15 
Lines1stop 2245 4.4 7.3 0 55 
Lines2stop 2245 20.6 19.4 0 127 
Lines3stop 2245 131.7 104.7 0 822 
Seats0stop 2245 42.4 185.7 0 2016 
Seats1stop 2245 759.1 1300.9 0 8523 
Seats2stop 2245 3653.5 3495.3 0 21249 
Seats3stop 2245 127024.4 182298.8 0 1521228 
Min. number of stops to destination 2245 1.4 0.7 0 4 

IUB* 
Number of co-authored papers 2245 8.2 30.6 0 469 
Geographical distance (mi) 2245 4085.3 2684.7 20.4 11075 
Number of papers at destination 2245 5380.2 13879.6 1 201693 
Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327 
Lines0stop 2245 0 0.4 0 9 
Lines1stop 2245 2.8 4.8 0 37 
Lines2stop 2245 15 14.1 0 95 
Lines3stop 2245 95.7 76.6 0 648 
Seats0stop 2245 6.3 49.7 0 1115 
Seats1stop 2245 419.4 737.2 0 4937 
Seats2stop 2245 2375.4 2253.6 0 13831 
Seats3stop 2245 60251.8 120158.7 0 1105416 
Min. number of stops to destination 2245 1.6 0.7 0 4 

IUPUI* 
Number of co-authored papers 2245 9.1 44.6 0 822 
Geographical distance (mi) 2245 4080.4 2683.5 40.5 11095 
Number of papers at destination 2245 5375.8 13875.8 1 201693 
Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327 
Lines0stop 2245 0 0.4 0 9 
Lines1stop 2245 2.8 4.8 0 37 
Lines2stop 2245 15 14.1 0 95 
Lines3stop 2245 95.7 76.6 0 648 
Seats0stop 2245 6.3 49.7 0 1115 
Seats1stop 2245 419.4 737.2 0 4937 
Seats2stop 2245 2375.4 2253.6 0 13831 
Seats3stop 2245 60251.8 120158.7 0 1105416 
Min. number of stops to destination 2245 1.6 0.7 0 4 

UMICH 
Number of co-authored papers 2245 34.6 164.2 0 3433 
Geographical distance (mi) 2245 4000.7 2619.9 30.4 11171 
Number of papers at destination 2245 5361.7 13842.6 1 201693 
Distance to airport at destination (mi) 2245 24.8 25.4 0.4 327 
Lines0stop 2245 0.2 0.8 0 9 
Lines1stop 2245 5 6.5 0 50 
Lines2stop 2245 21.4 18 0 122 
Lines3stop 2245 135.2 97.1 0 805 
Seats0stop 2245 41.3 159.4 0 1295 
Seats1stop 2245 894.2 1204.7 0 8396 
Seats2stop 2245 3880.8 3424.7 0 21114 
Seats3stop 2245 133916.5 165648.9 0 1535855 
Min. number of stops to destination 2245 1.2 0.7 0 4 
* IUB and IUPUI are served by one airport, Indianapolis International Airport (IND), therefore they have the same values of air 
transport variables. 
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Fig 2. Co-authored papers distribution by geographic distance 

Descriptive statistics of ‘Number of papers at destination’ and ‘Distance to airport at destination’ are 

almost identical for the full dataset and each of institutional datasets. This is due to the fact that each 

university has the same set of possible collaborators, except for itself—i.e., ASU ego network excludes 

ASU, IUB ego network excludes IUB, etc. The number of papers at destination was as low as one (recall 

that only geographical entitles with at least one affiliated paper were included in the dataset), and as 

high as almost 202 thousand (Boston metropolitan area). The mean distance from collaborating 

destination to its nearest airport was about 25 miles. The longest distances to the nearest airport with 

scheduled flights occur in vast and sparsely populated countries, such as Russia or Canada, and in 

emerging economies, mainly in Africa and South America. 

The values of air transport connectivity variables vary substantially among the four institutional sub-

datasets. Three airports that serve four considered campuses—note that IUB and IUPUI are served by 

a single airport, IND, located on the outskirts of Indianapolis—differ regarding the number of direct 
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flights to collaborative destinations. Consequently, they also differ in the number of collaborating 

destinations that reachable by direct flights, as well as flights with one, two or three 

stopovers/connections. UMICH is served by Detroit Metropolitan Airport (DTW) and has a privileged 

position owing to the fact that scholars from Ann Arbor can reach collaborators in 301 different 

collaborating destinations via direct flights. Phoenix Sky Harbor International Airport (PHX) serves 

ASU and provides direct connections to 218 destinations, whereas IND airport only provide 53 direct-

flight-accessible destinations. Furthermore, UMICH scholars can travel to more destinations using one-

stop connecting flights than scholars from other three universities. On the other hand, for ASU, IUB 

and IUPUI researchers more destinations are available only via connecting flights with at least two 

stops (see Table 3). As a result, air transport connectivity variables—‘LinesXstop’, ‘SeatsXstop’, and 

‘Minimum number of stops to destination’—have higher values for UMICH, than in the case of ASU 

and, in particular, IUB and IUPUI (see Table 2). 

Table 3. Destinations reachable with direct and connecting flights from airports serving four studied universities 

Airport(s) Direct  1 stop 2 stops 3 stops Total 

Detroit 301 1255 658 31 2245 
Indianapolis 53 894 1134 164 2245 
Phoenix 218 913 1042 72 2245 
Detroit serves UMICH, Indianapolis serves IUPUI and IUB, while ASU is served by Phoenix. 

MODELING APPROACH 

To model the impact of air transport availability on scientific collaboration we employed zero-inflated 

model. This class of models is designed for event count data where the sample is drawn from a zero-

inflated probability distribution—i.e., one that allows for frequent zero-valued observations. Our 

research dataset fits the requirements for using these models perfectly—about 45% of the  outcome 

variable equals zero. That is, during the observed period, the four ego-institutions had no co-authorships 

with 45% localizations that are identified as having published at least one scientific paper (according to 

data from Mazloumian et al., 2013). The zero-inflated model assumes that zero outcome can result from 

two different processes. First, the absence of collaboration can be due to the lack of research capacities 

at the destination. In this case, the expected outcome is zero. Second, if the destination has some 

research capacities, it is then a count process. Zero outcome is still possible (e.g. due to different 

research profiles), but numerous co-authorships are very likely. 

Consequently, the zero-inflated model has two components: “inflate” part that accounts for excess zeros 

(the equivalent of logit model) and a proper “count” part. To construct inflate part we used a single 

predictor: ‘Number of papers at destination’. This decision is based on the assumption that the adequate 

critical mass of scientific capacity determines the emergence of scientific collaboration, regardless of 

geographical distance and transport accessibility. In the count part, we used both control variables—i.e. 
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‘Geographical distance’ and ‘Number of papers at destination’—and independent variables for air 

transport connectivity and accessibility. 

To account for expected curvilinearity, additional quadratic terms have been used in the case of four 

variables: ‘Geographical distance’, ‘Number of papers at destination’, ‘LinesXstop’, and ‘SeatsXstop’. 

We assume that the impact of enumerated variables on scientific collaboration is not uniformed across 

their possible values. In particular, the impact can be more pronounced at low values and gradually less 

distinct at high values (diminishing returns pattern). For example, we can expect that the difference 

between one and two direct flights between the same two cities should have substantial impact on the 

likelihood of research collaboration, while the difference between 11 and 12 direct flights can have less 

pronounced effect. 

Because air transport makes little sense for short distances, observations in which geodistance variable 

was less than 100 miles were excluded from the further empirical analysis. In total, 55 observations 

were omitted, of which 4 for ASU, 23 for IUB, 22 for IUPUI, and 24 for UMICH. As a result, a restricted 

dataset used as a basis for estimations consisted of 8,925 observations, multidimensional links (co-

authorships, geographical distance, air links, etc.) links between four universities and theirs possible 

research collaborators. Sub-datasets for individual universities were as follows: ASU—2,241 

observations, IUB—2,222, IUPUI—2,223, and UMICH—2,221. 

We used Zero-inflated Negative Binomial Regression (ZINBR) model implemented in STATA. 

However, we tested other models for count data: Poisson (PRM), Zero-Inflated Poisson (ZIP), and 

Negative Binomial Regression Model (NBRM). The results of estimation strongly suggest that ZINBR 

fits our data significantly better than PRM, ZIP, and NBRM. 

The results section of the paper presents model specifications grouped into four tables. Specifications 

differ in terms of employed independent variables, as well as observations taken into account. Models 

from (1) to (14) are based on the full dataset, while models (15)-(34) are based on institutional sub-

datasets. Model (1) is a reference model that includes only control variables and any of the air transport 

variables. Other models include various configurations of air transport accessibility and connectivity 

variables. The comparison of complete and restricted specifications allows for insights into complex 

relationships between scientific collaboration, air transportation, and geographic separation. 

RESULTS 

Table 4 presents estimation results of models with air transport connectivity and accessibility (models 

6-9), as well as models without airport accessibility variable (2)-(5), compared to the reference model 

that does not include any transport variables (1). As expected, the basic model (1) with no air transport 



12 

availability variables does significantly worse than all other models with transport variables included. 

This is evidenced by the fact that model (1) has the highest values of Akaike Information Criterion 

(AIC) and Bayesian information criterion (BIC). The difference in AIC and BIC between the model (1) 

and the second worst specification, model (2), highly exceeds 10 and can, therefore, be considered 

significant (Burnham & Anderson, 2002; Raftery, 1995). The addition of air connectivity variables 

(models 2-5) noticeably improves the fit of the model (significant decrease in both AIC and BIC). 

Moreover, enriching the model with a variable describing the accessibility of the nearest airport (models 

6-9) improves the fit even more. Consequently, models combining air transport connectivity and 

accessibility (6)-(9) perform significantly better than specifications comprising only connectivity 

variables (1)-(5). These results plainly indicate that not only the physical distance influences the 

intensity of scientific collaboration, but also, the actual transport accessibility plays a significant role.  
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Table 4. Research collaboration and air transport connectivity and accessibility 

Dependent variable: Number 
of co-authored papers 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Count part          
Geographical distance 
(thous mi) 

-0.342*** -0.293*** -0.223*** -0.247*** -0.269*** -0.271*** -0.196*** -0.225*** -0.248*** 

Geographical distance 
squared (thous mi) 

0.016*** 0.012*** 0.008**   0.010*** 0.012*** 0.010*** 0.006*     0.008**   0.010*** 

Number of papers 
at destination 

0.129*** 0.124*** 0.119*** 0.117*** 0.117*** 0.117*** 0.110*** 0.109*** 0.108*** 

Number of papers 
at destination squared 

-0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001*** -0.000*** -0.000*** -0.000*** 

lines0stop  0.309***    0.342***    

lines0stop squared  -0.024***    -0.026***    

lines1stop   0.075***    0.079***   

lines1stop squared   -0.001***    -0.001***   

lines2stop    0.030***    0.030***  

lines2stop squared    -0.000***    -0.000***  

lines3stop     0.005***    0.005*** 

lines3stop squared     -0.000***    -0.000*** 

Distance to airport 
at destination (mi) 

     -0.012*** -0.013*** -0.013*** -0.013*** 

Constant 2.052*** 1.918*** 1.528*** 1.371*** 1.336*** 2.154*** 1.756*** 1.606*** 1.568*** 

Inflate part          
Number of papers at 

destination 
-3.787*** -3.709*** -3.681*** -3.679*** -3.678*** -3.487*** -3.438*** -3.436*** -3.438*** 

Constant -0.104       -0.1            -0.125       -0.144*     -0.149*     -0.193**   -0.224**   -0.242**   -0.249*** 

Constant lnalpha 0.827*** 0.814*** 0.796*** 0.796*** 0.794*** 0.796*** 0.773*** 0.773*** 0.771*** 

Statistics          
Observations 8925 8925 8925 8925 8925 8925 8925 8925 8925 

AIC 40998.1 40948.3 40813.1 40789.8 40773.8 40785.7 40626.8 40608.1 40590.9 

BIC 41054.9 41019.3 40884.0 40860.7 40844.7 40863.8 40704.9 40686.2 40668.9 

Significance levels: * p<0.05; ** p<0.01; *** p<0.001. 

Not only the existence of flight connection matters, but also its passenger capacity. Taking into account 

the number of available seats improves model’s fit as measured by AIC and BIC. This is visible by 

comparing models based on simple connectivity variable, ‘LinesXstop’ (Table 4), and models based on 

seats-weighted connectivity variable, ‘SeatsXstop’ (Table 5). In the case of specifications with direct 

connections (models 6 and 10), connections up to one stop (models 7 and 11), and connections up to 

two stops (models 8 and 12), BIC and AIC statistics are in favor of seats-weighted connectivity variable. 

However, in the case of connections up to three stops, non-weighted connectivity variable does better. 

This is probably because connections requiring up to three changes are rare, so in their case, the most 

important thing is the existence of a connection, not its capacity. Regardless, in the group of models 
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presented in tables 4 and 5, model (12), involving seats-weighted connections up to two stops, has the 

lowest AIC and BIC values, and therefore it can be preferred as best suited to the analyzed data. 

Table 5. Research collaboration and air transport – seats capacity 

Dependent variable: Number 
of co-authored papers 

(10) (11) (12) (13) 

Count part     
Geographical distance 

(thous mi) 
-0.271*** -0.242*** -0.266*** -0.280*** 

Geographical distance 
squared (thous mi) 

0.010*** 0.008**   0.009*** 0.011*** 

Number of papers 
at destination 

0.116*** 0.110*** 0.109*** 0.112*** 

Number of papers 
at destination squared 

-0.001*** -0.000*** -0.000*** -0.000*** 

Seats0stop 2.665*** 
   

Seats0stop squared -1.594*** 
   

Seats1stop 
 

0.468*** 
  

Seats1stop squared 
 

-0.044*** 
  

Seats2stop 
  

0.184*** 
 

Seats2stop squared 
  

-0.006*** 
 

Seats3stop 
   

0.003*** 

Seats3stop squared 
   

-0.000*** 

Distance to airport 
at destination (mi) 

-0.012*** -0.013*** -0.013*** -0.013*** 

Constant 2.160*** 1.897*** 1.739*** 1.957*** 

Inflate part     
Number of papers at 

destination 
-3.479*** -3.449*** -3.441*** -3.515*** 

Constant -0.191**   -0.225**   -0.248*** -0.235**   

Constant lnalpha 0.794*** 0.772*** 0.769*** 0.780*** 

Statistics     
Observations 8925 8925 8925 8925 

AIC 40782.5 40617.0 40578.8 40637.5 

BIC 40860.5 40695.1 40656.9 40715.6 

To ensure meaningful coefficients SeatsXstop variable is divided by 1000. 
Significance levels: * p<0.05; ** p<0.01; *** p<0.001. 

Further analysis of the compared models reveals, firstly, that direct connections have a stronger impact 

on the probability of scientific cooperation than flights requiring transfers—see specifications (14)-(18) 

with dummy variables for direct and connecting flights presented in Table 6. In the case of destinations 

that have no direct flight connection and requires minimum one stop, the number of expected co-

publication decreases by a factor of 0.49 as compared to destinations that can be reached with a single 

flight (for a full dataset as specified by model 14). Secondly, the greater the number of transfers 

required, the weaker the effect on the dependent variable. This is evidenced by the fact that the models 
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with only direct flights—specifications (2), (6), and (10)—have the highest coefficient of air transport 

variable (Lines0stop and Seats0Stop). In turn, models with up to one, two or three stops show decreasing 

values of air transport coefficient (Lines1stop and Seats1stop, Lines2stop and Seats2stop, Lines3stop 

and Seats3stop, respectively). This result is in line with expectations. Direct flights and those requiring 

fewer transfers are more convenient for passengers than connections requiring many stops. At the same 

time, not only air transport connectivity matters but also the distance between the location of the co-

authors and their nearest airport. The results of the estimation confirm the common sense of 

expectations that the proximity of the airport is advantageous, at least in the case of long-distance 

cooperation, which from time to time requires air travel. 

Table 6. Research collaboration and air transport – direct and connecting flights 

Dependent variable: 
Number of co-authored 
papers 

Full dataset ASU IUB IUPUI UMICH 

(14) (15) (16) (17) (18) 

Count part     
 

Geographical distance 
(thous mi) 

-0.122*** -0.420*** -0.284*** -0.374*** -0.077        

Geographical distance 
squared (thous mi) 

-0.000        0.022*** 0.014*      0.025*** -0.005        

Number of papers 
at destination 

0.113*** 0.108*** 0.108*** 0.099*** 0.142*** 

Number of papers 
at destination squared 

-0.000*** -0.000*** -0.000*** -0.000*** -0.001*** 

 
Minimum number of stops 

to  reach destination 
(compared to direct flight):     

 

1 stop   -0.705*** -0.313*      -0.112        -1.117*** -0.399*** 

2 stops -1.274*** -0.340*      -0.575*      -1.275*** -0.646*** 

3 stops -1.617*** -1.328*** -0.824*      -1.237*** -0.54          

Distance to airport 
at destination (mi) 

-0.012*** -0.011*** -0.009*** -0.011*** -0.014*** 

Constant 2.743*** 2.723*** 2.118*** 3.036*** 2.622*** 

Inflate part      
Number of papers at 

destination 
-3.528*** -3.748*** -4.178*** -1.666*** 0.027        

Constant -0.225**   0.082        0.669*** 0.364**   -23.779        

Constant lnalpha 0.766*** 0.553*** 0.656*** 0.664*** 0.684*** 

Statistics      
Observations 8907 2241 2222 2223 2221 

AIC 40522.8 9495.3 8475.1 8135.1 13538.4 

BIC 40607.9 9563.9 8543.6 8203.5 13606.8 

Significance levels: * p<0.05; ** p<0.01; *** p<0.001. 

The relationship between air connectivity and the number of co-authored papers is not linear. All the 

squared air connectivity variables are significant in specifications (1)-(13). Negative coefficients of the 

quadratic terms suggest that at some point, the connectivity is so high that its further increase (e.g. 
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adding one more flight between given airports) has far less impact on collaboration than the similar 

increase at low levels of the overall connectivity. 

The number of scientific papers affiliated in potentially cooperating destinations serves two functions 

in presented models: first, as specified in the inflate part, and second, as specified in the count part. The 

count part can be interpreted similarly to standard maximum likelihood models. Firstly, the increase in 

the number of articles at destination translates into reduction in the likelihood of a complete absence of 

co-authored articles. In other words, an increase in the number of articles at destination decreases the 

likelihood that the variable ‘number of co-authored articles’ will equal zero. Secondly, as the count part 

of the models shows, the more articles in the cooperating destination, the higher the number of co-

authored papers between the ego and the destination. However, this relationship is more complex, as 

indicated by the significant quadratic term for the number of articles at the destination. Negative 

coefficients of the quadratic term indicate the curvilinear shape of the relationship: as the number of 

articles increases, its positive influence on the number of co-authored articles is flattening out. 

In all presented models, geographical distance is negatively associated with research collaboration. The 

higher the distance, the smaller the number of co-publications. Furthermore, the effect is also 

curvilinear. In this case, positive coefficient of the squared variable suggests that the negative influence 

of physical distance on collaboration decreases gradually as the geographic separation increases. This 

can be interpreted as follows: the difference between, for example, 9,100 or 9,200 miles does not 

translate into a significant difference for the person considering a trip to such a remote place. But the 

difference between 100 and 200 miles means, approximately, a two-fold lengthening of the journey and 

thus, can be a significant factor influencing the decision. 

The influence of geographical distance on the number of co-publications is modified by air transport 

connectivity and accessibility, as well as by scientific capacity of collaborators. The low number of 

papers at the destination, less than one thousand, usually translates into the low number of co-

publications, no matter the distance. On the other hand, for destinations that accumulated high research 

capacity, the distance matters a lot. For example, in the case of destinations with 30 thousand papers, 

the decrease in the distance from 4,000 to 1,000 miles raises the expected number of co-publications 

twice, from circa 50 to 100. While the decrease from 10,000 to 7,000 miles (i.e., by the same number 

of miles, 3,000), raises the expected number of co-publications by no more than ten papers. Similarly, 

for the low values of connectivity and accessibility, the relation between geographical distance and 

expected number of co-authrships is flatter than for high values of those variables. Furthermore, the 

distance matters significantly more in the case of direct flights, than for connections requiring one, and 

in particular, two or three transfers (see Fig 3). This is reasonable as direct flights are constrained by 

technical capacities of aircrafts, as well as regulatory requirements, in particular limits for flight duty 

periods for crew member’s (Campante & Yanagizawa-Drott, 2017).  
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Fig 3.  Predicted number of collaborative papers at different values of selected independent variables* 

* The estimations are based on model (12) in the case of ‘Papers at destination’, Searts2stop’, and ‘Distance to airport’. For ‘Minimum number of stops’ 
model 14 has been employed. 

Estimations based on institutional sub-datasets (Table 6 and 7) show that relationship between air 

transport connectivity and research collaboration is not homogeneous across universities. Comparison 

of IUB and IUPUI is particularly interesting. Both institutions are served by the same airport. Thus they 

have the same air transport connectivity (However, it should be emphasized that IUB is located at a 

much greater distance to the Indianapolis airport than IUPUI). In the case of IUPUI, direct flights are 

the most significant predictors of co-publications, both statistically and substantially. While for IUB the 

availability of direct flights is not essential, but connections up to one and two stops matters much more 

than for IUPUI—compare specifications (23)-(30). Such divergent patterns can be attributed to 

organization-specific research collaboration networks, related to the disciplinary composition of 

institutions (IUPUI hosts school of medicine, while IUB does not), and resulted from long-term path-

dependent processes.
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Table 7. Research collaboration and air transport—institutional sub-datasets 

Dependent variable: 
Number of co-authored 
papers 

ASU IUB IUPUI UMICH 

(19) (20) (21) (22) (23) (24) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) 

Count part          
       

Geographical distance 
(thous mi) 

-0.432*** -0.439*** -0.427*** -0.461*** -0.406*** -0.347*** -0.378*** -0.399*** -0.434*** -0.394*** -0.421*** -0.468*** -0.141** -0.166*** -0.171*** -0.184*** 

Geographical distance 
squared (thous mi) 

0.023*** 0.024*** 0.022*** 0.025*** 0.022*** 0.018** 0.020*** 0.022*** 0.031*** 0.028*** 0.030*** 0.034*** -0.001      0.001     0.001 0.003 

Number of papers 
at destination 

0.108*** 0.106*** 0.104*** 0.108*** 0.108*** 0.105*** 0.102*** 0.105*** 0.098*** 0.096*** 0.095*** 0.100*** 0.145*** 0.134*** 0.134*** 0.136*** 

Number of papers 
at destination squared 

-0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.001*** -0.001*** -0.001*** -0.001*** 

Seats0stop 1.196*    1.112    6.021***    1.805*    

Seats0stop squared -0.572    -1.245    -5.683**    -1.483*    

Seats1stop  0.128*    0.433***    0.308*    0.296***   

Seats1stop squared  -0.008    -0.080*    -0.008    -0.029***   

Seats2stop   0.091***    0.161***    0.122**    0.130***  

Seats2stop squared   -0.003*    -0.009*    -0.003    -0.005***  

Seats3stop    0.001    0.002**    0.001    0.002*** 

Seats3stop squared    0    -0.000*    0    -0.000** 

Distance to airport 
at destination (mi) 

-0.012*** -0.012*** -0.012*** -0.012*** -0.009*** -0.010*** -0.010*** -0.010*** -0.010*** -0.010*** -0.010*** -0.010*** -0.014*** -0.014*** -0.014*** -0.014*** 

Constant 2.426*** 2.396*** 2.220*** 2.461*** 2.030*** 1.789*** 1.711*** 1.942*** 1.944*** 1.731*** 1.663*** 1.957*** 2.311*** 2.277*** 2.116*** 2.320*** 

Inflate part                 
Number of papers at 

destination 
-3.735*** -3.720*** -3.698*** -3.738*** -4.164*** -4.141*** -4.112*** -4.135*** -1.631*** -1.664*** -1.653*** -1.715*** 0.032 -5.637 -5.573 -5.634 

Constant 0.098 0.09 0.073 0.093 0.697*** 0.670*** 0.658*** 0.673*** 0.382** 0.355** 0.339** 0.359** -19.984 -1.806*** -1.823*** -1.809*** 

Constant lnalpha 0.554*** 0.556*** 0.552*** 0.559*** 0.665*** 0.659*** 0.655*** 0.662*** 0.664*** 0.679*** 0.682*** 0.698*** 0.691*** 0.599*** 0.594*** 0.605*** 

Statistics                 
Observations 2244 2244 2244 2244 2228 2228 2228 2228 2229 2229 2229 2229 2224 2224 2224 2224 

AIC 9506.6 9506.5 9497.2 9510.4 8508.4 8491.1 8485.9 8496.7 8155.1 8158.9 8158.1 8174.7 13566.3 13517.5 13505.9 13528.2 

BIC 9569.5 9569.4 9560 9573.3 8571.2 8553.9 8548.7 8559.5 8217.9 8221.7 8220.9 8237.5 13629 13580.3 13568.7 13590.9 

To ensure meaningful coefficients SeatsXstop variable is divided by 1000. 
Significance levels: * p<0.05; ** p<0.01; *** p<0.001.
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DISCUSSION AND CONCLUSIONS 

The paper makes two contributions. First, we show that air transport availability is an important factor 

for scientific collaboration, even when controlling for geographical distance and research capacities of 

collaborators. Second, both air transport connectivity (direct and indirect air connections between 

airports) and accessibility (distance to the nearest airport) are important correlates of scientific 

collaboration. Presented estimation results provide evidence that more flight connections and greater 

seat capacity increase the number of co-publications. Also, proximity of airport at collaborating 

destination is positively related to the expected number of co-authored papers. Moreover, direct flights 

and flights with one transfer are more valuable for intensifying scientific collaboration than travels 

involving more connecting flights. One additional direct flight rise the expected number of co-

publications by a factor of 1.41, while additional connection requiring up to two stops rises the number 

by a factor of 1.03. The results of our study are in line with conclusions from broader research corpus 

highlighting the importance of air transport for the economic development of cities and regions (DSA 

et al., 2013). In particular, the availability of direct flights is seen as a significant predictor of a city’s 

fortunes (Campante & Yanagizawa-Drott, 2017). 

Estimations based on four separate institutional sub-datasets show that the relationship between 

transport accessibility and scientific cooperation is not uniform. For some institutions—Indiana 

University-Purdue University Indianapolis in the first place—direct flights are more valuable predictors 

of distant co-publications, while for other three institutions indirect connections up to one or two stops 

better explain collaboration patterns. This diversity can be related to different research profiles of 

studied universities (see Supporting information). Not only research organizations differ in scientific 

specialization, but also scientific disciplines are spatially biased regarding propensity to collaborate 

(Wagner, 2008; Ponds et al., 2007). For example, collaboration in experimental particle physics is far 

more spatially bound than collaboration in theoretical mathematics. This organizational and disciplinary 

diversity shapes spatial patterns of collaboration, in a dynamic coopetitive processes (Nickelsen & 

Krämer, 2016). 

Two limitations of the presented approach have to be underlined. First, the direction of the relationship 

between air transport availability and research collaboration is ambiguous. Increasing collaboration can 

be both the result and the cause of transport availability. Development of collaborative relations between 

distant locations indeed rises the demand for transport. However, based on the results of a quasi-

experimental study by Catalini, Fons-Rosen & Gaulé (2016), we can expect that causal relation from 

transport connectivity to scientific collaboration also happen. Moreover, the circular cumulative 

causation can be expected—i.e., more collaboration leads to higher transport demand and in result 

greater transport capacity, which in turn induces more collaboration, and so forth. The second limitation 

is related to the dataset used in this study. We focused on four selected universities located in the US. 
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In other socio-economic and geographical contexts, the role of air transport can be different. For 

example, in Europe, Japan, and increasingly in China, railway connectivity can be more critical than air 

transport, at least up to some geographical distance. 

Future studies should take into account overall geo-localized co-authorship network instead of looking 

on selected ego-networks. Second, controlling for more variables might deepen our understanding of 

the phenomena. In particular, citation data can improve research capacity measurement. Third, other 

modes and measures of research collaboration should be examined. Patent data are most promising as 

they are easily accessible. Four, different modes of transport should be incorporated in future studies, 

in particular road and railroad accessibility. We expect that essential insights can be gained by 

combining multimodal transport connectivity and multimodal research collaborations, comparing and 

integrating co-publications, co-patenting and collaborative research projects. 
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