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About this presentation and its motivation

When working on geo-located point data, spatial econometrics applications are limited due to 
scalability for big (W becomes too big) data and predictions for out-of-sample for given W

 One can also use GWR, but it also has computational problems in optimising bandwith in big 
data

 As the new types of geo-located data are appearing (as sattelite data), one needs new methods
to address those issues

When scanning literature of last years, there appear many concepts (better or worse) on SPATIAL 
MACHINE LEARNING

THIS PAPER IS ITS OVERVIEW WITH CRITICAL ASSESSMENT WHAT AND HOW WAS DONE!
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Spatial unsupervised
learning
how to cluster geo-located data



1. Clustering of locations

 One uses k-means or Partitioning Around Medoids (PAM) to cluster geo-coordinates which build spatially
continous groups. 

 In empirical studies one can delineate catchment areas or establish territory for sales representatives

 In other applications, k-means helps to build irregular non-overlapping spatial clusters to run spatially 
stratified sampling from those clusters (e.g. Russ & Brenning, 2010; Schratz et al., 2019). This solves the 
problem of inconsistency in bootstrapping (Chernick & LaBudde, 2014; Kraamwinkel et al., 2018) and 
addresses the autocorrelation in cross-validation (discussed further). 

 K-means irregular partitioning can also be applied in the block bootstrap (Hall et al., 1995; Liu & Singh, 
1992). Sampling blocks of data from spatially pre-defined subsamples allows for drawing independent blocks 
of data but lowers the computational efficiency. 



2. Clustering of features and mapping

 Bajocco et al. (2015) use hierarchical clustering (with dendrogram) to analyse fire distribution in Sardinia. It clusters
phenological metrics and vegetated land surface of each territorial unit. It grouped the territorial units into similarly 
covered areas. For each cluster, one checks the fire frequency to assess the natural conditions that increase and decrease 
fire-proneness. 
 Liu et al. (2018) run non-spatial k-means clustering to detect urban sprawl. They run a-spatial partitioning of local 
spatial entropy H calculated for a gridded population. Local spatial entropy is expressed as 𝐻𝐻 = ∑𝑖𝑖 𝑝𝑝𝑖𝑖ln(𝑝𝑝𝑖𝑖), where pi is 
the relative population in the analysed cell and eight neighbouring grid cells and ∑𝑖𝑖=1𝑖𝑖=9 𝑝𝑝𝑖𝑖 = 1. Clustering of entropy, 
when mapped, may delineate areas with high and low local density. 

 Hengl et al. (2017) mapped soil nutrients in Africa (numer of clusters found with hierarchical clustering for 
parameterised Gaussian mixture models and BIC. They use fuzzy k-means and map it Scaled Shannon Entropy Index.

 Clusters are not always derived with a partitioning procedure – for local obesity in Switzerland Joost et al. (2019) 
mapped the local Getis-Ord Gi statistics for body mass index (BMI) and sugar-sweetened beverages intake frequency and 
concluded “optically” from visualisation about spatial agglomeration of high and low values of Gi.



3. Clustering of features with regard to location

 Dedicated algorithms: SKATER (Assunção et al., 2006), REDCAP (Guo, 2008), ClustGeo (Chavent et al. 2018), 
Bootstrap ClustGeo (DiStefano et al., 2020)

 Combinations with k-means, applied to seismic analysis of the Aegean region (Weatherill & Burton, 2009) to 
capture location of earthquakes and their magnitude. k-means minimizes the total within-cluster sum of squares
(difference between individual and group values) – trick is that cluster average distance was replaced by a 
magnitude-weighted average distance, which shifts the centroids of a cluster into the strongest earthquakes. 

 Spatially-oriented k-means appears also in biostatistics. In mass spectrometry brain analysis with pixel data, 
spectra is like time-series. Alexandrov and Kobarg (2011) proposed a spatially-aware k-means clustering. 
Dissimilarity (distance) matrix between pixels is compared as a composite distance between their spectra, 
weighted with neighbouring spectra in radius r, similarly to the spatial lag concept. Even if k-means clustering itself 
has no spatial component, the distances used in clustering include neighbourhood structure. 



4. Clustering of GWR coefficients

 Clusters of GWR individual coefficients are usually continuous over space,

 GWR coefficients can be used in profiling the locations assigned to different clusters – as obesity map (Chi et 
al., 2013) 

 GWR coefficients can detect spatial drift (Müller et al., 2013) in model for public transport services - one runs
two models: firstly, GWR, for which coefficiens are clustered; secondly global model which includes dummry
variables on belonging to GWR clusters.  It addresses heterogeneity and autocorrelation. 

 GWR can detect spatio-temporal stability (Kopczewska & Ćwiakowski, 2021). For each period one estimates
and clusters GWR coefficients. Next, they are rasterised to get median value of cluster ID in cell. Finally, one 
applies the Rand Index or Jaccard similarity to test the temporal similarity of clusters.  

 GWR can be in temporal version, mostly for housing: Soltani et al. (2021) cluster with SKATER the GTWR 
(Geographically and Temporally Weighted Regression). Helbich et al. (2013) used mixed GWR (MGWR)



5. Density-based clustering

 The most popular is DBSCAN – nice application cover the retail spatial extent (Pavlis et al., 2017), tropical
cyclone risk (Cai et al., 2020), in astronomy, e.g. to test the spatial distribution of Taurus stars (Joncour et al., 
2018), in imaging with an airborne LIDAR technique (Wang et al., 2019), WLAN Indoor Positioning Accuracy 
(Wang et al., 2019) and traffic collision risk in maritime transportation (Liu et al., 2020), text data and computer 
codes (Mustakim et al., 2019; Reis & Costa, 2015). 

 Before DBSCAN, there were a few other concepts of scanning statistics based on a moving circle - GAM 
(Geographical Analysis Machine), BNS (Besag-Newell Statistic) and Kulldorf’s (1997) spatial scan statistics. 

 After DBSCAN, there appeared a group of methods based on Voronoi / Dirichlet tessellation (Estivill-Castro & 
Lee, 2002; Lui et al., 2008), called Autoclust. Recently, as a rebirth, one can find proposals of its 3D 
implementations (Kim & Cho, 2019).



Spatial
supervised
learning

XV CONFERENCE OF SPATIAL ECONOMETRICS ASSOCIATION - TOKYO ONLINE 2021



Supervised learning
There are two general groups of ML models: 
a) typical regressions, which link the levels of features of variables x and y; 

b) classifiers, which detect feature levels x in observed classes y. 

In supervised learning we know the class/group, in unsupervised learning we guess
it. 

Typical spatial classification problem / solution is as follows: 

1) from an image (e.g. pixels of a satellite photo) one extracts features of the land 
(e.g. vegetation index, water index, land coverage) 
2) one adds geographical information (e.g. location coordinates)

3) one knows the real classification (e.g. type of crops), which is to be later 
forecasted with the model 

4) It is to teach an algorithm to distinguish the desired image elements by linking 
information from the photo with the real class, where an image pixel is an 
individual observation. 
5) next, the model can detect those elements on new photos to predict the class. 

Common methods:
- Naive Bayes
- k-Nearest Neighbours 
- Random Forests
- Support Vector Machines 
- Artificial Neural Networks  
- XGBoost
- Cubist

+ ensemble (mixture) of them

Applications: 
- in agriculture to distinguish crops, 

landscaping and land use (Pena & 
Brenning, 2015)

- geological mapping (e.g. Cracknell
& Reading, 2014)

- regional socio-economic 
development indicators based on 
night-light data or land use 
satellite images (e.g. Cecchini et 
al., 2021).



Simple regression models to answer spatial questions
 Appelhans et al. (2015) explain temperatures on Kilimanjaro with elevation, hill slope, aspects, sly-view factor 
and vegetation index – they use machine learning models in a regression, and the only spatial issue is spatial 
interpolation with kriging. 

 Liu et al. (2020) run non-spatial random forest model on socio-economic and environmental variables to 
explain poverty in Yunyang, China, using data from 348 villages. The only computational spatial component is 
the Moran test of residuals, which evidenced no spatial autocorrelation. The power of the study lies in merging 
different sources of geo-projected data: surface data for elevation, slope, land cover types and natural disasters 
(with resolution 30m or 1:2000); point data like access to town, market, hospital, bank, school, or industry taken 
from POI (Point-Of-Interest) or road density network (in scale 1:120000); and polygonal data for the labour force 
from a statistical office. 

 Rodríguez-Pérez et al. (2020) model the lightning-caused fire in geo-located grid cells in Spain. They use RF, 
generalised additive model (GAM) and spatial models, where the fact that lightning-caused fire appeared in a 
given grid-cell was explained with features observed there such as vegetation type and structure, terrain, 
climate, and lightning characteristics. 

 Gerassis et al. (2020) map rural workers' health condition and severe disease exposure using a ML approach. 
They use Bayesian Network to detect factors of good/bad health. Spatial methods appear only for interpolation 
of illness cases observed, which is a separate model (Point-to-Area Poisson kriging model, which deals with 
Spatial Count Data, unequal territories and diverse population composition). The spatial challenge was in 
different granulation of data: point data in the study sample and polygonal data as a basis of prediction. 



Spatial cross-validation
 In spatial CV – one divides points into k irregular clusters (by using, e.g. k-means) and selects one cluster as 
an out-of-sample cross-validation part. Due to spatial autocorrelation between training and testing 
observations, simple spatial data sampling gives biased and over-optimistic predictions.

 Spatial CV increases prediction error (Liu, 2020). 

 Lovelace et al. (2019) show that a spatially cross-validated model gives a lower AUROC (Area Under the 
Receiver Operator Characteristic Curve), as it is not biased with spatial autocorrelation. 

 Spatial cross-validation is becoming a standard (e.g. Goetz et al., 2015; Meyer et al., 2019), but some 
studies still neglect this effect and do not address the autocorrelation problem (Park & Bae, 2015; Xu & Li, 
2020).



Image recognition in spatial classification tasks
 Good example of geological mapping - supervised lithology classification (Cracknell & Reading, 2014). 
 As input (X) use the airborne geophysics and multispectral satellite data, 
 As output (Y) for a given territory, they use the known lithology classification, given as polygons on the image for each class. 
 They also know the xy coordinates of the pixels of those images. 
 They produce an algorithm which discovers the lithology classification from airborne geophysics and multispectral satellites. 
 They run three kinds of models on pixel data: i) X→Y, ii) xy coords → Y, iii) X & xy coords → Y.
 This is to teach software to understand what is in the picture and give a lithology class to each pixel. 

 Other example – Nicolis et al. (2020) model dynamic statistics of earthquakes in Chile. Their dataset of seismic 
events included a period of 17 years, with 86000 geo-located cases in 6575 days. For each day with an earthquake, 
they created a grid-based image (1°x1°) of the territory with grid-intensity estimated by an ETAS (Epidemic-Type 
Aftershock Sequences) model. Using this, they applied deep learning methods such as Long Short Term Memory 
(LSTM) and Convolutional Neural Networks (CNN) for spatial earthquake predictions – predicting the maximum 
intensity and the probability that this maximum will be in a given grid cell.

 Images as predictors in spatial models are not always informative. 
 Art images or face photo can predict environmental phenomena well (Fourcade et al., 2018)
 Help 1: let’s use domain-relevant and structurally related data (Behrens et al., 2020) 
 Hepl 2: use covariates with the same or narrower range of spatial dependence of the dependent variable. 



Mixtures of GWR and machine learning models
 How to take one step further from the classical analysis – change of GWR into machine learning solution. 

 The process behind GWR lies in applying small local regressions on neighbouring points for each observation 
instead of one global estimation. 

 Additionally, one decides on: 
 i) the radius and shape of the "moving geometry" (e.g. circle, ellipse) 
 ii) flexibility – fixed or adaptive kernel to address different density
 iii) weighting scheme – uniform or distance-decaying from the core point

 Li (2019) mixed GWR with machine learning models to improve wind speed predictions in China by better 
capturing local variability. It gave a 12–16% improvement in R2 and a decrease in RMSE.

 According to Fotheringham et al. (2017), traditional GWR should rather be substituted by Multiscale 
Geographically Weighted Regression (MGWR). In MGWR, one decides on bandwidth not only with regard to 
location / local density but allows for optimisation of covariate-specific bandwidth. 



Spatial variables in machine learning models
 Latest solutions try to include spatial components among covariates - coordinates or distances between 
other points. 
 Buffer distance (Hengl et al., 2018) - calculated between each point of the territory and observed points, can address

spatial autocorrelation better than geo-coordinates
 PCA-reduced distance vectors (from distance matrix) (Ahn et al., 2020) instead of geo-coordinates – less computational

requirements and reasonable good performance
 Euclidean distance fields (Behrens et al., 2018) – one may inlclude seven EDF covariates: X and Y coordinates, the 

distances to the corners of a rectangle around the sample set and the distance to the centre location of the sample set. 
They address non-stationarity and spatial autocorrelation and improve predictions, as long as their range of spatial
dependence is narrower than in dependent variable.  

 This discussion os however open - Meyer et al. (2019) assess the inclusion of spatial covariates by quality 
measures such as Kappa or RMSE. 
 They claim that longitude, latitude, elevation, the Euclidean distances (also as EDF) can be unimportant or even 

counterproductive in spatial modelling and recommend eliminating those regressors from models. 
 They do not approve of the high fit of ML models, treating them as over-optimistic and misleading
 They claim that in visual inspection, one observes artificial linear predictions resulting from the inclusion of longitude 

and latitude, and their elimination helps in making predictions real. 



Perspectives (1): efficiency in big data
 Spatial Machine Learning enables more efficient computation in the case of big data

 Data low grantualtion is painful for classical spatial econometrics based on an nxn spatial weights matrix W or 
nxn distance matrix. 

 Arbia et al. (2019) shows that the max. size of dataset for PC analysis is around 70,000, while already with 
30,000 observations, the creation of W is challenging (Kopczewska, 2021). 

ML models, which are free of W, are automatically quicker, but addressing the autocorrelation issue is still a 
challenge

 New sources of data such as lightmaps of terrain (Night Earth, Europe At Night, NASA, etc.) or day photos of 
landscape (Google Maps, Street View etc.) bring new insights and information, and due to big-data robust 
analytics are useful. 

 Spatial data handling (e.g., processing remote sensing image classification or spectral-spatial classification, 
executed with supervised learning algorithms, ensemble and deep learning) is especially helpful in big data tasks 
(Du et al., 2020). 



Perspectives (2): spatial patterns

 There are different ways to address spatial heterogeneity and isotropy. 

 Classical spatial econometrics was concentrated on spatial autocorrelation and mostly neglected other 
problems. 

 Local regressions, combined with global ones, help in capturing unstable spatial patterns. 

Methods open a path for spatio-temporal modelling and studying the similarity of different layers - the 
dynamics connected to location can be addressed in more ways than the classical panel model. 

 Integrating classical statistics and econometrics with machine learning provides more instruments to the 
modelling toolbox than a single approach. 



Perspectives (3): forecasting and new topics

 These methods allow for better forecasting due to inherited boosting and bootstrapping in ML algorithms. 

ML results are also more flexible for spatial expanding into new points and ensemble methods give better
prediction

 A shift towards spatial ML from spatial econometrics is also a change from explanation into forecasting. 

Methods drive innovations such as new indicators based on vegetation index or light indicators. 

Methods also introduce 3D solutions to spatial studies, such as social topography with 3D inequalities 
(Aharon-Gutman et al., 2018; Aharon-Gutman & Burg, 2019), 3D Building Information Models (Zhou et al., 
2019) or urban compactness growth (Koziatek & Dragićević, 2017). 

 There appear urban studies that rely on information from GoogleStreeView, by counting cars, pedestrians, 
bikers etc. to predict traffic (Goel et al., 2018), or counting urban disorders such as cigarette butts, trash, 
empty bottles, graffiti abandoned cars and houses etc. to predict neighbourhood disorder (Marco et al., 2017) 
or counting green vegetation index to predict safety (Li et al., 2015).  



Example of application





Goal of paper
Study on spatio-temporal stability of clusters:
 we have geo-located point data for housing transactions
 we estimate hedonic GWR (Geographically Weighted Regression) model for each year
 for each year we take GWR coefficients and cluster them
 we get the submarkets – the areas where the coefficients are similar (clusters)
 we inquiry, if the submarkets are stable over time and space – are clusters changing their

location (moving over space)?
 we divide area into raster cells and assign points to rasters
 in rasters, we count median / mode value of cluster ID
 with Rand Index / Jaccard similarity we test year-to-year cluster similarity in rasters
 this shows the percentage of raster cells belonging to the same cluster

This is novelty – till now this approach was never used. 





Details of hedonic model
Dataset from secondary market transactions of apartments in Warsaw from the Registry of Price and Value of 
Real Estate, run by the Mayor of Warsaw. For t=10 years between 2006 and 2015 65,674 observations
GWR model:

where i is the observation number i=1, …,N; s is the feature number in the set s=1, …, S; 𝑦𝑦𝑖𝑖 is the value of the 
dependent variable of the i-th observation; 𝑥𝑥𝑖𝑖,𝑠𝑠 is the value of the s-th feature (explanatory variable) of the i-th
observation; 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 are the geographical coordinates of the observation, 𝛽𝛽𝑠𝑠 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 is the value of the effect of 
the s-th feature for given geographic coordinates (GWR coefficients) and 𝜀𝜀𝑖𝑖 is the error term.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖
= 𝛽𝛽0,𝑖𝑖 + 𝛽𝛽1,𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖 + β2,t𝑏𝑏𝑝𝑝𝑝𝑝𝑏𝑏𝑝𝑝𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 + 𝛽𝛽3,𝑖𝑖𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑝𝑝𝑖𝑖𝑖𝑖 + 𝛽𝛽4,𝑖𝑖𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑝𝑝_0𝑎𝑎𝑝𝑝𝑏𝑏𝑢𝑢𝑔𝑔𝑏𝑏𝑖𝑖𝑖𝑖 + 𝛽𝛽5,𝑖𝑖𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑝𝑝_𝑏𝑏𝑎𝑎𝑝𝑝𝑏𝑏𝑢𝑢𝑔𝑔𝑏𝑏𝑖𝑖𝑖𝑖 + 𝛽𝛽6,𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖𝑖𝑖
+ 𝛽𝛽7,𝑖𝑖𝑝𝑝𝑝𝑝𝑔𝑔𝑏𝑏𝑣𝑣𝑎𝑎𝑟𝑟𝑝𝑝𝑏𝑏𝑔𝑔𝑖𝑖𝑖𝑖 + 𝛽𝛽8,𝑖𝑖𝑏𝑏𝑎𝑎𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑔𝑔𝑟𝑟𝑖𝑖𝑖𝑖 + 𝛽𝛽9,𝑖𝑖𝑠𝑠𝑠𝑠_𝑏𝑏𝑢𝑢𝑝𝑝𝑓𝑓𝑏𝑏𝑝𝑝𝑔𝑔𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽10,𝑖𝑖𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝_𝑟𝑟𝑝𝑝𝑎𝑎𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝛽𝛽11,𝑖𝑖𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝_𝑝𝑝𝑢𝑢𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
+ 𝛽𝛽12,𝑖𝑖𝑟𝑟𝑝𝑝𝑠𝑠𝑝𝑝_𝑏𝑏𝑝𝑝𝑝𝑝𝑣𝑣𝑝𝑝𝑔𝑔𝑎𝑎𝑖𝑖𝑖𝑖 + 𝛽𝛽13,𝑖𝑖𝑏𝑏𝑝𝑝𝑠𝑠𝑟𝑟. 𝑝𝑝𝑢𝑢𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝛽𝛽14,𝑖𝑖𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝_𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑔𝑔𝑖𝑖𝑖𝑖 + 𝛽𝛽15,𝑖𝑖𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝_𝑓𝑓𝑏𝑏𝑝𝑝𝑝𝑝𝑠𝑠𝑟𝑟𝑠𝑠 it + 𝛽𝛽16,𝑖𝑖𝑝𝑝𝑏𝑏𝑢𝑢𝑔𝑔𝑟𝑟_ℎ𝑝𝑝𝑠𝑠𝑟𝑟𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
+ 𝛽𝛽17,𝑖𝑖𝑓𝑓𝑝𝑝𝑎𝑎𝑝𝑝_ℎ𝑝𝑝𝑠𝑠𝑟𝑟𝑏𝑏𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 + 𝛽𝛽18,𝑖𝑖frac_privit + 𝛽𝛽19,𝑖𝑖rights_ownedit + 𝜀𝜀𝑖𝑖𝑖𝑖

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 + �
𝑠𝑠=1

𝑆𝑆
𝑥𝑥𝑖𝑖,𝑠𝑠𝛽𝛽𝑠𝑠 𝑢𝑢𝑖𝑖 , 𝑣𝑣𝑖𝑖 + 𝜀𝜀𝑖𝑖



Spatial distributions of modelled pattern: 
a) price per sqm in 2014, 
b) GWR coefficients for variable “age” in 2014



Clustered GWR coefficients: 
a) Silhouette width for all clusters in 2014, 
b) PCA representation of k-means clusters in 2014



Clustered GWR coefficients: 
a) raster map of clusters for 2014, 
b) boxplot of variable “age” by clusters in 2014



Rand Index and Jaccard Similarity
Analysis of spatio-temporal stability - by comparing 
values in rasters over time (as comparison of ordered 
vectors of cluster id). 

Rand and Jaccard indices compare pairs of pairs of 
raster cells, checking if both pairs belong to the same 
or different cluster in both analysed periods (t0 and 
t1). 

Rand Index=1 means that partitions always agree (c 
and d are NULL) and clusterings are the same, while 
Rand Index=0 means that partitions migrate and do not 
agree for even a single pair. 

Jaccard similarity is interpreted as Rand Index, but it is 
concentrated only on pairs that are connected, being a 
zoom compared to the Rand Index.

Rand Index is R=(a+b)/(a+b+c+d)
Jaccard similarity is J=a/(a+c+d)
where: 
◦ a - in t0 the same, in t1 the same, 
◦ b - in t0 different, in t1 different, 
◦ c - in t0 the same, in t1 different, 
◦ d - in t0 different, in t1 the same; 

Rand: The counter is always the same (a) and always 
different (b), and denominator are all possible 
outcomes (a,b,c,d). 
Jaccard: it omits a number of events which are 
always in different clusters (b), both in the counter 
and denominator. 



Rand Index and Jaccard Similarity
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Rand Index & Jaccard similarity for clusters 
of GWR estimates in pairs year-to-year



Conclusions
It is novel methodological solution for testing spatio-temporal stability and 
works well

That might be used in land use policy, urban organisation etc. 

It gives new insights into real estate submarkets – to understand urban trends, 
urban mobility, residential segregation, wealth accumulation, effects of 
revitalisation, equal housing opportunities

IN GENERAL, SPATIAL ML ALLOWS ANSWERING NEW QUESTIONS!



Thank You!
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